IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v27y2025i1d10.1007_s11009-024-10134-6.html
   My bibliography  Save this article

Optimal Monotone Mean-Variance Problem in a Catastrophe Insurance Model

Author

Listed:
  • Bohan Li

    (Soochow University)

  • Junyi Guo

    (Nankai University)

  • Xiaoqing Liang

    (Hebei University of Technology)

Abstract

This paper explores an optimal investment and reinsurance problem involving both ordinary and catastrophe insurance businesses. The catastrophic events are modeled as following a compound Poisson process, impacting the ordinary insurance business. The claim intensity for the ordinary insurance business is described using a Cox process with a shot-noise intensity, the jump of which is proportional to the size of the catastrophe event. This intensity increases when a catastrophe occurs and then decays over time. The insurer’s objective is to maximize their terminal wealth under the Monotone Mean-Variance (MMV) criterion. In contrast to the classical Mean-Variance (MV) criterion, the MMV criterion is monotonic across its entire domain, aligning better with fundamental economic principles. We first formulate the original MMV optimization problem as an auxiliary zero-sum game. Through solving the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation, explicit forms of the value function and optimal strategies are obtained. Additionally, we provide the efficient frontier within the MMV criterion. Several numerical examples are presented to demonstrate the practical implications of the results.

Suggested Citation

  • Bohan Li & Junyi Guo & Xiaoqing Liang, 2025. "Optimal Monotone Mean-Variance Problem in a Catastrophe Insurance Model," Methodology and Computing in Applied Probability, Springer, vol. 27(1), pages 1-37, March.
  • Handle: RePEc:spr:metcap:v:27:y:2025:i:1:d:10.1007_s11009-024-10134-6
    DOI: 10.1007/s11009-024-10134-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-024-10134-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-024-10134-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Jingyi & Landriault, David & Li, Bin, 2020. "Optimal reinsurance-investment strategy for a dynamic contagion claim model," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 206-215.
    2. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Misspecification," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 6, pages 155-216, World Scientific Publishing Co. Pte. Ltd..
    3. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2009. "Portfolio Selection With Monotone Mean‐Variance Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 487-521, July.
    4. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
    5. Junna Bi & Qingbin Meng & Yongji Zhang, 2014. "Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer," Annals of Operations Research, Springer, vol. 212(1), pages 43-59, January.
    6. Andreas Eichler & Gunther Leobacher & Michaela Szolgyenyi, 2016. "Utility Indifference Pricing of Insurance Catastrophe Derivatives," Papers 1607.01110, arXiv.org, revised May 2017.
    7. Aleš Černý, 2020. "Semimartingale theory of monotone mean–variance portfolio allocation," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1168-1178, July.
    8. Jakub Trybuła & Dariusz Zawisza, 2019. "Continuous-Time Portfolio Choice Under Monotone Mean-Variance Preferences—Stochastic Factor Case," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 966-987, August.
    9. Patricia Born & W. Viscusi, 2006. "The catastrophic effects of natural disasters on insurance markets," Journal of Risk and Uncertainty, Springer, vol. 33(1), pages 55-72, September.
    10. Egami, Masahiko & Young, Virginia R., 2008. "Indifference prices of structured catastrophe (CAT) bonds," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 771-778, April.
    11. Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
    12. Łukasz Delong & Russell Gerrard, 2007. "Mean-variance portfolio selection for a non-life insurance company," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 339-367, October.
    13. Brachetta, M. & Ceci, C., 2019. "Optimal proportional reinsurance and investment for stochastic factor models," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 15-33.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2021. "Optimal Reinsurance and Investment under Common Shock Dependence Between Financial and Actuarial Markets," Papers 2105.07524, arXiv.org.
    2. Alev{s} v{C}ern'y & Johannes Ruf & Martin Schweizer, 2025. "Dynamically optimal portfolios for monotone mean--variance preferences," Papers 2503.08272, arXiv.org.
    3. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Papers 1610.09875, arXiv.org.
    4. Yang Shen & Bin Zou, 2022. "Cone-constrained Monotone Mean-Variance Portfolio Selection Under Diffusion Models," Papers 2205.15905, arXiv.org.
    5. Ben Ammar, Semir & Braun, Alexander & Eling, Martin, 2015. "Alternative Risk Transfer and Insurance-Linked Securities: Trends, Challenges and New Market Opportunities," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 56, number 56.
    6. Andreas Eichler & Gunther Leobacher & Michaela Szolgyenyi, 2016. "Utility Indifference Pricing of Insurance Catastrophe Derivatives," Papers 1607.01110, arXiv.org, revised May 2017.
    7. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    8. Maccheroni, Fabio & Marinacci, Massimo & Rustichini, Aldo, 2006. "Dynamic variational preferences," Journal of Economic Theory, Elsevier, vol. 128(1), pages 4-44, May.
    9. Bai, Yanfei & Zhou, Zhongbao & Xiao, Helu & Gao, Rui & Zhong, Feimin, 2022. "A hybrid stochastic differential reinsurance and investment game with bounded memory," European Journal of Operational Research, Elsevier, vol. 296(2), pages 717-737.
    10. Chang, Lung-fu & Hung, Mao-wei, 2009. "Analytical valuation of catastrophe equity options with negative exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 59-69, February.
    11. Krzysztof Burnecki & Mario Nicoló Giuricich, 2017. "Stable Weak Approximation at Work in Index-Linked Catastrophe Bond Pricing," Risks, MDPI, vol. 5(4), pages 1-19, December.
    12. Giuricich, Mario Nicoló & Burnecki, Krzysztof, 2019. "Modelling of left-truncated heavy-tailed data with application to catastrophe bond pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 498-513.
    13. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    14. Chen, Lv & Qian, Linyi & Shen, Yang & Wang, Wei, 2016. "Constrained investment–reinsurance optimization with regime switching under variance premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 253-267.
    15. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    16. Yuchen Li & Zongxia Liang & Shunzhi Pang, 2022. "Continuous-Time Monotone Mean-Variance Portfolio Selection in Jump-Diffusion Model," Papers 2211.12168, arXiv.org, revised May 2024.
    17. Matteo Brachetta & Giorgia Callegaro & Claudia Ceci & Carlo Sgarra, 2024. "Optimal reinsurance via BSDEs in a partially observable model with jump clusters," Finance and Stochastics, Springer, vol. 28(2), pages 453-495, April.
    18. Shen, Yang & Zeng, Yan, 2015. "Optimal investment–reinsurance strategy for mean–variance insurers with square-root factor process," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 118-137.
    19. Yuyang Chen & Tianjiao Hua & Peng Luo, 2024. "A robust stochastic control problem with applications to monotone mean-variance problems," Papers 2408.08595, arXiv.org.
    20. Zhang, Liming & Wu, Hongping & Zhao, Qian & Wang, Ning, 2024. "Equilibrium reinsurance strategies for catastrophe and secondary claims under α-maxmin mean–variance criterion," International Review of Financial Analysis, Elsevier, vol. 96(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:27:y:2025:i:1:d:10.1007_s11009-024-10134-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.