IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v26y2024i4d10.1007_s11009-024-10126-6.html
   My bibliography  Save this article

Bayes Estimator Under Neutrosophic Statistics: A Robust Approach for Handling Uncertainty and Imprecise Data

Author

Listed:
  • Muhammad Aslam

    (King Abdulaziz University)

Abstract

In this paper, we introduce a Bayes estimator that incorporates the loss function within the context of neutrosophic statistics. This novel estimator provides an alternative to the conventional Bayes estimator, particularly valuable for managing imprecise data and uncertainty. We utilize the proposed estimator to obtain the neutrosophic posterior distribution for the normal distribution. Additionally, an extensive simulation study and comparative analysis are conducted, demonstrating the significant impact of uncertainty on the mean, variance and posterior credible interval of the posterior distribution. Based on our findings, we advocate for the use of this Bayes estimator in uncertain environments across multiple fields.

Suggested Citation

  • Muhammad Aslam, 2024. "Bayes Estimator Under Neutrosophic Statistics: A Robust Approach for Handling Uncertainty and Imprecise Data," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-18, December.
  • Handle: RePEc:spr:metcap:v:26:y:2024:i:4:d:10.1007_s11009-024-10126-6
    DOI: 10.1007/s11009-024-10126-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-024-10126-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-024-10126-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
    2. Jakob Gulddahl Rasmussen, 2013. "Bayesian Inference for Hawkes Processes," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 623-642, September.
    3. Luciana Dalla Valle, 2012. "Erratum to: Bayesian Copulae Distributions, with Application to Operational Risk Management," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 1121-1121, December.
    4. Matthew Sainsbury-Dale & Andrew Zammit-Mangion & Raphaël Huser, 2024. "Likelihood-Free Parameter Estimation with Neural Bayes Estimators," The American Statistician, Taylor & Francis Journals, vol. 78(1), pages 1-14, January.
    5. Mazen Nassar & Refah Alotaibi & Hassan Okasha & Liang Wang, 2022. "Bayesian Estimation Using Expected LINEX Loss Function: A Novel Approach with Applications," Mathematics, MDPI, vol. 10(3), pages 1-21, January.
    6. Ceren Eda Can & Gul Ergun & Refik Soyer, 2022. "Bayesian Analysis of Proportions via a Hidden Markov Model," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3121-3139, December.
    7. Kai Yao, 2022. "Bayesian inference with uncertain data of imprecise observations," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(15), pages 5330-5341, June.
    8. Stefanie Muff & Andrea Riebler & Leonhard Held & Håvard Rue & Philippe Saner, 2015. "Bayesian analysis of measurement error models using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(2), pages 231-252, February.
    9. Alan Agresti & David B. Hitchcock, 2005. "Bayesian inference for categorical data analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 14(3), pages 297-330, December.
    10. Webb, Emily L. & Forster, Jonathan J., 2008. "Bayesian model determination for multivariate ordinal and binary data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2632-2649, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp Arbenz, 2013. "Bayesian Copulae Distributions, with Application to Operational Risk Management—Some Comments," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 105-108, March.
    2. Zheng Wei & Daeyoung Kim & Erin M. Conlon, 2022. "A Bayesian approach to the analysis of asymmetric association for two-way contingency tables," Computational Statistics, Springer, vol. 37(3), pages 1311-1338, July.
    3. Roy Mill, 2011. "Hiring and Learning in Online Global Labor Markets," Working Papers 11-17, NET Institute, revised Oct 2011.
    4. Krupskii, Pavel & Huser, Raphaël, 2024. "Max-convolution processes with random shape indicator kernels," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    5. Edgar Santos‐Fernandez & Erin E. Peterson & Julie Vercelloni & Em Rushworth & Kerrie Mengersen, 2021. "Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 147-173, January.
    6. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    7. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    8. Chen, Jian & Qi, Shuyuan, 2024. "Limit-hitting exciting effects: Modeling jump dependencies in stock markets adhering to daily price-limit rules," Journal of Banking & Finance, Elsevier, vol. 163(C).
    9. David Brownstone & Hao (Audrey) Fang, 2014. "A vehicle ownership and utilization choice model with endogenous residential density," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 135-151.
    10. Markus Viljanen & Lisa Tostrams & Niels Schoffelen & Jan van de Kassteele & Leon Marshall & Merijn Moens & Wouter Beukema & Wieger Wamelink, 2024. "A joint model for the estimation of species distributions and environmental characteristics from point-referenced data," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-27, June.
    11. Muff, Stefanie & Ott, Manuela & Braun, Julia & Held, Leonhard, 2017. "Bayesian two-component measurement error modelling for survival analysis using INLA—A case study on cardiovascular disease mortality in Switzerland," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 177-193.
    12. Mark J. Meyer & Haobo Cheng & Katherine Hobbs Knutson, 2023. "Bayesian Analysis of Multivariate Matched Proportions with Sparse Response," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 490-509, July.
    13. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    14. Chen-Wei Liu & Björn Andersson & Anders Skrondal, 2020. "A Constrained Metropolis–Hastings Robbins–Monro Algorithm for Q Matrix Estimation in DINA Models," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 322-357, June.
    15. Pavel V. Shevchenko, 2009. "Implementing Loss Distribution Approach for Operational Risk," Papers 0904.1805, arXiv.org, revised Jul 2009.
    16. Juan Wu & Xue Wang & Stephen G. Walker, 2014. "Bayesian Nonparametric Inference for a Multivariate Copula Function," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 747-763, September.
    17. Luai Al-Labadi & Petru Ciur & Milutin Dimovic & Kyuson Lim, 2023. "Assessing Multinomial Distributions with a Bayesian Approach," Mathematics, MDPI, vol. 11(13), pages 1-16, July.
    18. Philip A. White & Alan E. Gelfand, 2021. "Generalized Evolutionary Point Processes: Model Specifications and Model Comparison," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 1001-1021, September.
    19. David Imo & Holger Dressel & Katarzyna Byber & Christine Hitzke & Matthias Bopp & Marion Maggi & Stephan Bose-O’Reilly & Leonhard Held & Stefanie Muff, 2018. "Predicted Mercury Soil Concentrations from a Kriging Approach for Improved Human Health Risk Assessment," IJERPH, MDPI, vol. 15(7), pages 1-14, June.
    20. Santitissadeekorn, Naratip & Lloyd, David J.B. & Short, Martin B. & Delahaies, Sylvain, 2020. "Approximate filtering of conditional intensity process for Poisson count data: Application to urban crime," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:26:y:2024:i:4:d:10.1007_s11009-024-10126-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.