IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v25y2023i2d10.1007_s11009-023-10032-3.html
   My bibliography  Save this article

Application of Bernstein Polynomials on Estimating a Distribution and Density Function in a Triangular Array

Author

Listed:
  • Lina Wang

    (Dalian University of Technology)

  • Dawei Lu

    (Dalian University of Technology)

Abstract

In this paper, we study some asymptotic properties for the Bernstein estimators of the limit distribution function and the limit density function under a triangular sample. Specifically, we obtain the uniform strong consistency, mean squared error (MSE) and mean integrated squared error (MISE) for the resulting estimators. In addition, we give the optimal choice of the bandwidth parameter m in terms of the sample size n, for both the MSE and MISE. Numerical simulations are presented to show that the Bernstein estimators outperform Gaussian kernel estimators in terms of MISE under a triangular sample.

Suggested Citation

  • Lina Wang & Dawei Lu, 2023. "Application of Bernstein Polynomials on Estimating a Distribution and Density Function in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-14, June.
  • Handle: RePEc:spr:metcap:v:25:y:2023:i:2:d:10.1007_s11009-023-10032-3
    DOI: 10.1007/s11009-023-10032-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-023-10032-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-023-10032-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dawei Lu & Lina Wang, 2021. "On the Rates of Asymptotic Normality for Bernstein Polynomial Estimators in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1519-1536, December.
    2. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    3. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    4. Axel Tenbusch, 1994. "Two-dimensional Bernstein polynomial density estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 41(1), pages 233-253, December.
    5. Gaku Igarashi & Yoshihide Kakizawa, 2014. "On improving convergence rate of Bernstein polynomial density estimator," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 61-84, March.
    6. Dawei Lu & Lina Wang & Jingcai Yang, 2022. "The stochastic convergence of Bernstein polynomial estimators in a triangular array," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 34(4), pages 987-1014, October.
    7. Galen R. Shorack, 1979. "The weighted empirical process of row independent random variables with arbitrary distribution functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 33(4), pages 169-189, December.
    8. Babu, G. Jogesh & Chaubey, Yogendra P., 2006. "Smooth estimation of a distribution and density function on a hypercube using Bernstein polynomials for dependent random vectors," Statistics & Probability Letters, Elsevier, vol. 76(9), pages 959-969, May.
    9. Belalia, Mohamed, 2016. "On the asymptotic properties of the Bernstein estimator of the multivariate distribution function," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 249-256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nour-Eddine Berrahou & Salim Bouzebda & Lahcen Douge, 2024. "The Bahadur Representation for Empirical and Smooth Quantile Estimators Under Association," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-37, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Belalia, Mohamed & Bouezmarni, Taoufik & Leblanc, Alexandre, 2017. "Smooth conditional distribution estimators using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 166-182.
    4. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    5. Lu, Lu, 2015. "On the uniform consistency of the Bernstein density estimator," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 52-61.
    6. Dawei Lu & Lina Wang, 2021. "On the Rates of Asymptotic Normality for Bernstein Polynomial Estimators in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1519-1536, December.
    7. Belalia, Mohamed, 2016. "On the asymptotic properties of the Bernstein estimator of the multivariate distribution function," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 249-256.
    8. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    9. Nour-Eddine Berrahou & Salim Bouzebda & Lahcen Douge, 2024. "The Bahadur Representation for Empirical and Smooth Quantile Estimators Under Association," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-37, June.
    10. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    11. Ghosh, Sujit K. & Burns, Christopher B. & Prager, Daniel L. & Zhang, Li & Hui, Glenn, 2018. "On nonparametric estimation of the latent distribution for ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 86-98.
    12. Igarashi, Gaku & Kakizawa, Yoshihide, 2014. "Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and Birnbaum–Saunders kernel estimators," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 235-246.
    13. Manté, Claude, 2015. "Iterated Bernstein operators for distribution function and density estimation: Balancing between the number of iterations and the polynomial degree," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 68-84.
    14. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    15. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    16. Ariane Hanebeck & Bernhard Klar, 2021. "Smooth distribution function estimation for lifetime distributions using Szasz–Mirakyan operators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1229-1247, December.
    17. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    18. Paolo Brunori & Guido Neidhöfer, 2021. "The Evolution of Inequality of Opportunity in Germany: A Machine Learning Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(4), pages 900-927, December.
    19. Noël Veraverbeke, 2024. "Bernstein estimator for conditional copulas," Statistical Papers, Springer, vol. 65(9), pages 5943-5954, December.
    20. Krätschmer, Volker & Schied, Alexander & Zähle, Henryk, 2012. "Qualitative and infinitesimal robustness of tail-dependent statistical functionals," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 35-47, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:25:y:2023:i:2:d:10.1007_s11009-023-10032-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.