IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v23y2021i4d10.1007_s11009-020-09829-3.html
   My bibliography  Save this article

On the Rates of Asymptotic Normality for Bernstein Polynomial Estimators in a Triangular Array

Author

Listed:
  • Dawei Lu

    (Dalian University of Technology
    Dalian University of Technology)

  • Lina Wang

    (Dalian University of Technology)

Abstract

It is well known that the empirical distribution function has superior properties as an estimator of the underlying distribution function F. However, considering its jump discontinuities, the estimator is limited when F is continuous. Mixtures of the binomial probabilities relying on Bernstein polynomials lead to good approximation properties for the resulting estimator of F. In this paper, we establish the rates of (pointwise) asymptotic normality for Bernstein estimators by the Berry-Esseen Theorem in the case that the observations are in a triangular array. Particularly, the (asymptotic) absence of the boundary bias and the asymptotic behaviors of the variance are investigated. Besides, numerical simulations are presented to verify the validity of our main results.

Suggested Citation

  • Dawei Lu & Lina Wang, 2021. "On the Rates of Asymptotic Normality for Bernstein Polynomial Estimators in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1519-1536, December.
  • Handle: RePEc:spr:metcap:v:23:y:2021:i:4:d:10.1007_s11009-020-09829-3
    DOI: 10.1007/s11009-020-09829-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-020-09829-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-020-09829-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    2. Alexandre Leblanc, 2009. "Chung–Smirnov property for Bernstein estimators of distribution functions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 133-142.
    3. Makigusa, Natsumi & Naito, Kanta, 2020. "Asymptotic normality of a consistent estimator of maximum mean discrepancy in Hilbert space," Statistics & Probability Letters, Elsevier, vol. 156(C).
    4. Mengmei Xi & Xuejun Wang, 2019. "On the rates of asymptotic normality for recursive kernel density estimators under ϕ-mixing assumptions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(2), pages 340-363, April.
    5. Babu, G. Jogesh & Chaubey, Yogendra P., 2006. "Smooth estimation of a distribution and density function on a hypercube using Bernstein polynomials for dependent random vectors," Statistics & Probability Letters, Elsevier, vol. 76(9), pages 959-969, May.
    6. Axel Tenbusch, 1994. "Two-dimensional Bernstein polynomial density estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 41(1), pages 233-253, December.
    7. Belalia, Mohamed, 2016. "On the asymptotic properties of the Bernstein estimator of the multivariate distribution function," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 249-256.
    8. Laïb, Naâmane & Louani, Djamal, 2019. "Asymptotic normality of kernel density function estimator from continuous time stationary and dependent processes," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 187-196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lina Wang & Dawei Lu, 2023. "Application of Bernstein Polynomials on Estimating a Distribution and Density Function in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    4. Belalia, Mohamed & Bouezmarni, Taoufik & Leblanc, Alexandre, 2017. "Smooth conditional distribution estimators using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 166-182.
    5. Lina Wang & Dawei Lu, 2023. "Application of Bernstein Polynomials on Estimating a Distribution and Density Function in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-14, June.
    6. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    7. Lu, Lu, 2015. "On the uniform consistency of the Bernstein density estimator," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 52-61.
    8. Belalia, Mohamed, 2016. "On the asymptotic properties of the Bernstein estimator of the multivariate distribution function," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 249-256.
    9. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    10. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    11. Manté, Claude, 2015. "Iterated Bernstein operators for distribution function and density estimation: Balancing between the number of iterations and the polynomial degree," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 68-84.
    12. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    13. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    14. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    15. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    16. Ghosh, Sujit K. & Burns, Christopher B. & Prager, Daniel L. & Zhang, Li & Hui, Glenn, 2018. "On nonparametric estimation of the latent distribution for ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 86-98.
    17. Axel Tenbusch, 1997. "Nonparametric curve estimation with bernstein estimates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 45(1), pages 1-30, January.
    18. Turnbull, Bradley C. & Ghosh, Sujit K., 2014. "Unimodal density estimation using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 13-29.
    19. Burda, Martin & Prokhorov, Artem, 2014. "Copula based factorization in Bayesian multivariate infinite mixture models," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 200-213.
    20. Hirukawa, Masayuki & Sakudo, Mari, 2014. "Nonnegative bias reduction methods for density estimation using asymmetric kernels," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 112-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:23:y:2021:i:4:d:10.1007_s11009-020-09829-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.