IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v22y2020i2d10.1007_s11009-019-09710-y.html
   My bibliography  Save this article

SIR-Type Epidemic Models as Block-Structured Markov Processes

Author

Listed:
  • Claude Lefèvre

    (Université Libre de Bruxelles)

  • Matthieu Simon

    (University of Melbourne)

Abstract

This paper proposes a block-structured Markov process to describe the spread of epidemics of Susceptible-Infected-Removed (SIR) type. Our purpose is to determine the distribution of the final state of the process and of some other interesting measures of the dimension of the epidemic. The followed modeling approach proves to be simple and systematic. Its flexibility is underlined by the presentation of several specific models that extend the classical general epidemic. Finally, two numerical examples illustrate some of the results obtained.

Suggested Citation

  • Claude Lefèvre & Matthieu Simon, 2020. "SIR-Type Epidemic Models as Block-Structured Markov Processes," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 433-453, June.
  • Handle: RePEc:spr:metcap:v:22:y:2020:i:2:d:10.1007_s11009-019-09710-y
    DOI: 10.1007/s11009-019-09710-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-019-09710-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-019-09710-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asmussen, Soren & Avram, Florin & Usabel, Miguel, 2002. "Erlangian Approximations for Finite-Horizon Ruin Probabilities," ASTIN Bulletin, Cambridge University Press, vol. 32(2), pages 267-281, November.
    2. Picard, Philippe & Lefèvre, Claude, 1993. "Distribution of the final state and severity of epidemics with fatal risk," Stochastic Processes and their Applications, Elsevier, vol. 48(2), pages 277-294, November.
    3. Runhuan Feng & Jose Garrido, 2011. "Actuarial Applications of Epidemiological Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(1), pages 112-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gómez-Corral, A. & Lopez-Herrero, M.J. & Taipe, D., 2023. "A Markovian epidemic model in a resource-limited environment," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    2. André de Palma & Nathalie Picard & Stef Proost, 2020. "SCARE: When Economics Meets Epidemiology with Covid-19," CESifo Working Paper Series 8573, CESifo.
    3. Antonio Gómez-Corral & Martín López-García & Maria Jesus Lopez-Herrero & Diana Taipe, 2020. "On First-Passage Times and Sojourn Times in Finite QBD Processes and Their Applications in Epidemics," Mathematics, MDPI, vol. 8(10), pages 1-25, October.
    4. André de Palma & Nathalie Picard & Stef Proost, 2021. "SCARE: when Economics meets Epidemiology with COVID-19, first wave," THEMA Working Papers 2021-10, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    5. Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
    6. Xiaowei Chen & Wing Fung Chong & Runhuan Feng & Linfeng Zhang, 2020. "Pandemic risk management: resources contingency planning and allocation," Papers 2012.03200, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bladt, Mogens & Ivanovs, Jevgenijs, 2021. "Fluctuation theory for one-sided Lévy processes with a matrix-exponential time horizon," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 105-123.
    2. Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
    3. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "On the optimality of joint periodic and extraordinary dividend strategies," Papers 2006.00717, arXiv.org, revised Dec 2020.
    4. Hansjoerg Albrecher & Pierre-Olivier Goffard, 2020. "On the profitability of selfish blockchain mining under consideration of ruin," Papers 2010.12577, arXiv.org.
    5. Caroline Hillairet & Olivier Lopez, 2021. "Propagation of cyber incidents in an insurance portfolio: counting processes combined with compartmental epidemiological models," Post-Print hal-02564462, HAL.
    6. Ran Xu & Wenyuan Wang & Jose Garrido, 2022. "Optimal Dividend Strategy Under Parisian Ruin with Affine Penalty," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1385-1409, September.
    7. Esther Frostig & Adva Keren-Pinhasik, 2020. "Parisian Ruin with Erlang Delay and a Lower Bankruptcy Barrier," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 101-134, March.
    8. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "Optimal periodic dividend strategies for spectrally negative L\'evy processes with fixed transaction costs," Papers 2004.01838, arXiv.org, revised Dec 2020.
    9. Søren Asmussen & Mogens Bladt, 2022. "From PH/MAP to ME/RAP," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 173-175, April.
    10. Francisco J. Zagmutt & Stephen H. Sempier & Terril R. Hanson, 2013. "Disease Spread Models to Estimate Highly Uncertain Emerging Diseases Losses for Animal Agriculture Insurance Policies: An Application to the U.S. Farm‐Raised Catfish Industry," Risk Analysis, John Wiley & Sons, vol. 33(10), pages 1924-1937, October.
    11. David Landriault & Jean-François Renaud & Xiaowen Zhou, 2014. "An Insurance Risk Model with Parisian Implementation Delays," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 583-607, September.
    12. Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.
    13. Avram, Florin & Palmowski, Zbigniew & Pistorius, Martijn, 2008. "A two-dimensional ruin problem on the positive quadrant," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 227-234, February.
    14. Lee, Wing Yan & Li, Xiaolong & Liu, Fangda & Shi, Yifan & Yam, Sheung Chi Phillip, 2021. "A Fourier-cosine method for finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 256-267.
    15. Hainaut, Donatien, 2020. "An actuarial approach for modeling pandemic risk," LIDAM Discussion Papers ISBA 2020025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Cheung, Eric C.K. & Zhu, Wei, 2023. "Cumulative Parisian ruin in finite and infinite time horizons for a renewal risk process with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 84-101.
    17. Asmussen, Søren & Bladt, Mogens, 2022. "Moments and polynomial expansions in discrete matrix-analytic models," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1165-1188.
    18. Donatien Hainaut, 2020. "An Actuarial Approach for Modeling Pandemic Risk," Risks, MDPI, vol. 9(1), pages 1-28, December.
    19. Hansjörg Albrecher & José Carlos Araujo-Acuna, 2022. "On The Randomized Schmitter Problem," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 515-535, June.
    20. Xie, Jiayi & Cui, Zhenyu & Zhang, Zhimin, 2022. "Some new infinite series expansions for the first passage time densities in a jump diffusion model with phase-type jumps," Applied Mathematics and Computation, Elsevier, vol. 429(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:22:y:2020:i:2:d:10.1007_s11009-019-09710-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.