IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v24y2019i6d10.1007_s11027-018-9823-y.html
   My bibliography  Save this article

Solving the general map overlay problem using a fuzzy inference system designed for spatial disaggregation

Author

Listed:
  • Jörg Verstraete

    (Polish Academy of Sciences
    University of Santiago de Compostela)

Abstract

Identification of mitigation and adaptation strategies in any situation has to be a well informed decision. This decision not only has to be based on quantifiable data (e.g. amounts or concentrations of emissions), but it also needs to consider spatial aspects such as the source of emissions, the impact of policies on the population or the identification of responsible parties. As such, it is important that the decisions are based on accurate reports made by experts in the field. Many data are available to the experts, and combining this data tends to increase the inherently contained uncertainty. Novel operations that exhibit a lower increase of uncertainty can yield outcomes that contain less uncertainty, which subsequently improves the accuracy of the resulting reports. At the same time, the decision-makers are confronted with different reports, and the comparison of the contained spatial aspects requires combining the data, which exhibits similar issues relating to uncertainty. With data usually represented in gridded structures, comparing them often requires a process called regridding: this is the process of mapping one grid onto a second grid, a process which increases spatial uncertainty. In this contribution, a novel regridding algorithm is presented. While mainly intended as a preprocessing tool for the experts, it is also applicable for supporting the comparison of gridded datasets as used by decision-makers. In the context of this article, a grid can be irregular, allowing the presented algorithm to also be used for remapping a grid onto, e.g. administrative borders or vice versa. The presented algorithm for regridding is a modification that is generally applicable on spatial disaggregation algorithms. It was developed in parallel with a novel method that uses artificial intelligence (in the form of fuzzy rule-based systems) to involve proxy data to obtain better results, and it will be demonstrated using this approach for spatial disaggregation. The methodology to perform regridding using an algorithm designed for spatial disaggregation is detailed in this article and the performance of the combination with the artificial intelligent system for disaggregation is illustrated by means of an example.

Suggested Citation

  • Jörg Verstraete, 2019. "Solving the general map overlay problem using a fuzzy inference system designed for spatial disaggregation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 1101-1122, August.
  • Handle: RePEc:spr:masfgc:v:24:y:2019:i:6:d:10.1007_s11027-018-9823-y
    DOI: 10.1007/s11027-018-9823-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9823-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9823-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khrystyna Boychuk & Rostyslav Bun, 2014. "Regional spatial inventories (cadastres) of GHG emissions in the Energy sector: Accounting for uncertainty," Climatic Change, Springer, vol. 124(3), pages 561-574, June.
    2. Gotway C.A. & Young L.J., 2002. "Combining Incompatible Spatial Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 632-648, June.
    3. Matthias Jonas & Gregg Marland & Volker Krey & Fabian Wagner & Zbigniew Nahorski, 2014. "Uncertainty in an emissions-constrained world," Climatic Change, Springer, vol. 124(3), pages 459-476, June.
    4. Jörg Verstraete, 2014. "Solving the map overlay problem with a fuzzy approach," Climatic Change, Springer, vol. 124(3), pages 591-604, June.
    5. Maya G. Hutchins & Jeffrey D. Colby & Gregg Marland & Eric Marland, 2017. "A comparison of five high-resolution spatially-explicit, fossil-fuel, carbon dioxide emission inventories for the United States," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 947-972, August.
    6. Olgierd Hryniewicz & Zbigniew Nahorski & Jörg Verstraete & Joanna Horabik & Matthias Jonas, 2014. "Compliance for uncertain inventories via probabilistic/fuzzy comparison of alternatives," Climatic Change, Springer, vol. 124(3), pages 519-534, June.
    7. Joanna Horabik & Zbigniew Nahorski, 2014. "Improving resolution of a spatial air pollution inventory with a statistical inference approach," Climatic Change, Springer, vol. 124(3), pages 575-589, June.
    8. Peter Rafaj & Markus Amann & José Siri & Henning Wuester, 2014. "Changes in European greenhouse gas and air pollutant emissions 1960–2010: decomposition of determining factors," Climatic Change, Springer, vol. 124(3), pages 477-504, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostyslav Bun & Zbigniew Nahorski & Joanna Horabik-Pyzel & Olha Danylo & Linda See & Nadiia Charkovska & Petro Topylko & Mariia Halushchak & Myroslava Lesiv & Mariia Valakh & Vitaliy Kinakh, 2019. "Development of a high-resolution spatial inventory of greenhouse gas emissions for Poland from stationary and mobile sources," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 853-880, August.
    2. Nadiia Charkovska & Mariia Halushchak & Rostyslav Bun & Zbigniew Nahorski & Tomohiro Oda & Matthias Jonas & Petro Topylko, 2019. "A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: reducing the errors and uncertainties in global emission modelling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 907-939, August.
    3. Khrystyna Boychuk & Rostyslav Bun, 2014. "Regional spatial inventories (cadastres) of GHG emissions in the Energy sector: Accounting for uncertainty," Climatic Change, Springer, vol. 124(3), pages 561-574, June.
    4. Nadiia Charkovska & Joanna Horabik-Pyzel & Rostyslav Bun & Olha Danylo & Zbigniew Nahorski & Matthias Jonas & Xu Xiangyang, 2019. "High-resolution spatial distribution and associated uncertainties of greenhouse gas emissions from the agricultural sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 881-905, August.
    5. Tomohiro Oda & Rostyslav Bun & Vitaliy Kinakh & Petro Topylko & Mariia Halushchak & Gregg Marland & Thomas Lauvaux & Matthias Jonas & Shamil Maksyutov & Zbigniew Nahorski & Myroslava Lesiv & Olha Dany, 2019. "Errors and uncertainties in a gridded carbon dioxide emissions inventory," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 1007-1050, August.
    6. Peter Rafaj & Markus Amann, 2018. "Decomposing Air Pollutant Emissions in Asia: Determinants and Projections," Energies, MDPI, vol. 11(5), pages 1-14, May.
    7. KURKALOVA, Lyubov A. & WADE, Tara R., 2013. "Aggregated Choice Data And Logit Models: Application To Environmental Benign Practices Of Conservation Tillage By Farmers In The State Of Iowa," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 13(2), pages 119-128.
    8. Jörg Verstraete, 2014. "Solving the map overlay problem with a fuzzy approach," Climatic Change, Springer, vol. 124(3), pages 591-604, June.
    9. Boris A. Portnov, 2011. "The Change of Support Problem (COSP) and its Implications for Urban Analysis: Some Evidence from a Study of the European Urban System," ERSA conference papers ersa10p106, European Regional Science Association.
    10. Riccardo Borgoni & Piero Quatto & Giorgio Somà & Daniela Bartolo, 2010. "A geostatistical approach to define guidelines for radon prone area identification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(2), pages 255-276, June.
    11. Reynal-Querol, Marta & García-Montalvo, José, 2017. "Ethnic Diversity and Growth: Revisiting the Evidence," CEPR Discussion Papers 12400, C.E.P.R. Discussion Papers.
    12. Benjamin Montmartin & Marcos Herrera & Nadine Massard, 2017. "R&D policy regimes in France: New evidence from a spatio-temporal analysis," Working Papers hal-01559041, HAL.
    13. Montmartin, B. & Herrera, M. & Massard, N., 2015. "R&D policies in France: New evidence from a NUTS3 spatial analysis," Working Papers 2015-11, Grenoble Applied Economics Laboratory (GAEL).
    14. Burger, M.J. & van Oort, F.G. & van der Knaap, G.A., 2008. "A Treatise on the Geographical Scale of Agglomeration Externalities and the Modifiable Areal Unit Problem," ERIM Report Series Research in Management ERS-2008-076-ORG, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Joana Portugal-Pereira & Alexandre Koberle & André F. P. Lucena & Pedro R. R. Rochedo & Mariana Império & Ana Monteiro Carsalade & Roberto Schaeffer & Peter Rafaj, 2018. "Interactions between global climate change strategies and local air pollution: lessons learnt from the expansion of the power sector in Brazil," Climatic Change, Springer, vol. 148(1), pages 293-309, May.
    16. Chen, Zhuo & Gotway Crawford, Carol A., 2012. "The role of geographic scale in testing the income inequality hypothesis as an explanation of health disparities," Social Science & Medicine, Elsevier, vol. 75(6), pages 1022-1031.
    17. Chakir, Raja & Laurent, Thibault & Ruiz-Gazen, Anne & Thomas-Agnan, Christine & Vignes, Céline, 2016. "Spatial scale in land use models: application to the Teruti-Lucas survey," TSE Working Papers 16-667, Toulouse School of Economics (TSE).
    18. Chen, Zhuo & Roy, Kakoli & Haddix, Anne C. & Thacker, Stephen B., 2010. "Factors associated with differences in mortality and self-reported health across states in the United States," Health Policy, Elsevier, vol. 94(3), pages 203-210, March.
    19. Kazuyuki Miyazaki & Kevin Bowman, 2023. "Predictability of fossil fuel CO2 from air quality emissions," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Roger Bivand, 2017. "Revisiting the Boston data set - Changing the units of observation affects estimated willingness to pay for clean air," REGION, European Regional Science Association, vol. 4, pages 109-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:24:y:2019:i:6:d:10.1007_s11027-018-9823-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.