IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v20y2015i8p1545-1568.html
   My bibliography  Save this article

How can straw incorporation management impact on soil carbon storage? A meta-analysis

Author

Listed:
  • Fei Lu

Abstract

Straw incorporation (SI) is a common practice in China and has important implications for agricultural sustainability. This study aimed to quantitatively summarise the response of top soil (0–20 cm) carbon (C) to SI under different agricultural management regimes. Results indicated that compared with straw removal (SR), SI significantly increased soil C storage by 12 %. Moreover, incorporation of chopped straw with tillage treatment (ploughing and rotary tillage) increased C storage compared to unchopped straw without tillage treatment. SI implementation with upland cropping, in the northwest and northeast resulted in higher C storage compared with rice cropping, and in the northern and southern regions. Changes in soil C were observed based on SI variables, including tillage and straw amounts in fine-textured soils, however straw amount rather than tillage treatment exhibited a greater influence on soil C in coarse-textured soils. We concluded SI implementation with increased amounts of chopped straw for a longer duration was favourable to soil C sequestration in Chinese croplands. Furthermore, we estimated if SI was popularised across all of China’s agricultural regions, soil C sequestration potential would reach 48.2 ~ 56.2 Tg C year −1 . SI practices should therefore be encouraged. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Fei Lu, 2015. "How can straw incorporation management impact on soil carbon storage? A meta-analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1545-1568, December.
  • Handle: RePEc:spr:masfgc:v:20:y:2015:i:8:p:1545-1568
    DOI: 10.1007/s11027-014-9564-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-014-9564-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-014-9564-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Francis, 2002. "Hydropower in China," Energy Policy, Elsevier, vol. 30(14), pages 1241-1249, November.
    2. Shan Huang & Yanni Sun & Weijian Zhang, 2012. "Changes in soil organic carbon stocks as affected by cropping systems and cropping duration in China’s paddy fields: a meta-analysis," Climatic Change, Springer, vol. 112(3), pages 847-858, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin A. Bolinder & Felicity Crotty & Annemie Elsen & Magdalena Frac & Tamás Kismányoky & Jerzy Lipiec & Mia Tits & Zoltán Tóth & Thomas Kätterer, 2020. "The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 929-952, August.
    2. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Yu’e Li & Shengwei Shi & Muhammad Ahmed Waqas & Xiaoxia Zhou & Jianling Li & Yunfan Wan & Xiaobo Qin & Qingzhu Gao & Shuo Liu & Andreas Wilkes, 2018. "Long-term (≥20 years) application of fertilizers and straw return enhances soil carbon storage: a meta-analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(4), pages 603-619, April.
    4. Gao, Li & Zhang, Wendong & Mei, Yingdan & Sam, Abdoul G. & Song, Yu & Jin, Shuqin, 2018. "Do farmers adopt fewer conservation practices on rented land? Evidence from straw retention in China," Land Use Policy, Elsevier, vol. 79(C), pages 609-621.
    5. Fan, Fan & Henriksen, Christian Bugge & Porter, John, 2016. "Valuation of ecosystem services in organic cereal crop production systems with different management practices in relation to organic matter input," Ecosystem Services, Elsevier, vol. 22(PA), pages 117-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    2. Wang, Jinxia & Zhu, Yunyun & Sun, Tianhe & Huang, Jikun & Zhang, Lijuan & Guan, Baozhu & Huang, Qiuqiong, 2020. "Forty years of irrigation development and reform in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(1), January.
    3. Wang, Yongpei & Yan, Weilong & Zhuang, Shangwen & Zhang, Qian, 2019. "Competition or complementarity ? The hydropower and thermal power nexus in China," Renewable Energy, Elsevier, vol. 138(C), pages 531-541.
    4. Liuyang Yao & Minjuan Zhao & Tao Xu, 2017. "China’s Water-Saving Irrigation Management System: Policy, Implementation, and Challenge," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    5. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    6. Purohit, Pallav, 2008. "Small hydro power projects under clean development mechanism in India: A preliminary assessment," Energy Policy, Elsevier, vol. 36(6), pages 2000-2015, June.
    7. Ming, Zeng & Honglin, Li & Mingjuan, Ma & Na, Li & Song, Xue & Liang, Wang & Lilin, Peng, 2013. "Review on transaction status and relevant policies of southern route in China's West–East Power Transmission," Renewable Energy, Elsevier, vol. 60(C), pages 454-461.
    8. Taitiya Kenneth Yuguda & Sunday Adiyoh Imanche & Tian Ze & Tosin Yinka Akintunde & Bobby Shekarau Luka, 2023. "Hydropower development, policy and partnership in the 21st century: A China-Nigeria outlook," Energy & Environment, , vol. 34(4), pages 1170-1204, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:20:y:2015:i:8:p:1545-1568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.