IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v29y2023i3d10.1007_s10985-023-09597-5.html
   My bibliography  Save this article

Regression models for censored time-to-event data using infinitesimal jack-knife pseudo-observations, with applications to left-truncation

Author

Listed:
  • Erik T. Parner

    (Aarhus University)

  • Per K. Andersen

    (University of Copenhagen)

  • Morten Overgaard

    (Aarhus University)

Abstract

Jack-knife pseudo-observations have in recent decades gained popularity in regression analysis for various aspects of time-to-event data. A limitation of the jack-knife pseudo-observations is that their computation is time consuming, as the base estimate needs to be recalculated when leaving out each observation. We show that jack-knife pseudo-observations can be closely approximated using the idea of the infinitesimal jack-knife residuals. The infinitesimal jack-knife pseudo-observations are much faster to compute than jack-knife pseudo-observations. A key assumption of the unbiasedness of the jack-knife pseudo-observation approach is on the influence function of the base estimate. We reiterate why the condition on the influence function is needed for unbiased inference and show that the condition is not satisfied for the Kaplan–Meier base estimate in a left-truncated cohort. We present a modification of the infinitesimal jack-knife pseudo-observations that provide unbiased estimates in a left-truncated cohort. The computational speed and medium and large sample properties of the jack-knife pseudo-observations and infinitesimal jack-knife pseudo-observation are compared and we present an application of the modified infinitesimal jack-knife pseudo-observations in a left-truncated cohort of Danish patients with diabetes.

Suggested Citation

  • Erik T. Parner & Per K. Andersen & Morten Overgaard, 2023. "Regression models for censored time-to-event data using infinitesimal jack-knife pseudo-observations, with applications to left-truncation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 654-671, July.
  • Handle: RePEc:spr:lifeda:v:29:y:2023:i:3:d:10.1007_s10985-023-09597-5
    DOI: 10.1007/s10985-023-09597-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-023-09597-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-023-09597-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morten Overgaard & Erik Thorlund Parner & Jan Pedersen, 2018. "Estimating the variance in a pseudo‐observation scheme with competing risks," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(4), pages 923-940, December.
    2. Thomas H. Scheike & Mei-Jie Zhang & Thomas A. Gerds, 2008. "Predicting cumulative incidence probability by direct binomial regression," Biometrika, Biometrika Trust, vol. 95(1), pages 205-220.
    3. Per Kragh Andersen, 2003. "Generalised linear models for correlated pseudo-observations, with applications to multi-state models," Biometrika, Biometrika Trust, vol. 90(1), pages 15-27, March.
    4. Morten Overgaard & Per K. Andersen & Erik T. Parner, 2015. "Regression analysis of censored data using pseudo-observations: An update," Stata Journal, StataCorp LP, vol. 15(3), pages 809-821, September.
    5. Ronald B. Geskus, 2011. "Cause-Specific Cumulative Incidence Estimation and the Fine and Gray Model Under Both Left Truncation and Right Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 39-49, March.
    6. Li, Ruosha & Peng, Limin, 2014. "Varying coefficient subdistribution regression for left-truncated semi-competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 65-78.
    7. Erik T. Parner & Per K. Andersen, 2010. "Regression analysis of censored data using pseudo-observations," Stata Journal, StataCorp LP, vol. 10(3), pages 408-422, September.
    8. Martin Jacobsen & Torben Martinussen, 2016. "A Note on the Large Sample Properties of Estimators Based on Generalized Linear Models for Correlated Pseudo-observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 845-862, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    2. Szilárd Nemes & Erik Bülow & Andreas Gustavsson, 2020. "A Brief Overview of Restricted Mean Survival Time Estimators and Associated Variances," Stats, MDPI, vol. 3(2), pages 1-13, May.
    3. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    4. Soyoung Kim & Yayun Xu & Mei‐Jie Zhang & Kwang‐Woo Ahn, 2020. "Stratified proportional subdistribution hazards model with covariate‐adjusted censoring weight for case‐cohort studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1222-1242, December.
    5. Yayun Xu & Soyoung Kim & Mei-Jie Zhang & David Couper & Kwang Woo Ahn, 2022. "Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 241-262, April.
    6. Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    7. Yuxue Jin & Tze Leung Lai, 2017. "A new approach to regression analysis of censored competing-risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 605-625, October.
    8. Govert E. Bijwaard & Mikko Myrskylä & Per Tynelius & Finn Rasmussen, 2017. "Educational gain in cause-specific mortality: accounting for confounders," MPIDR Working Papers WP-2017-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    9. Govert E. Bijwaard & Per Tynelius & Mikko Myrskylä, 2019. "Education, cognitive ability, and cause-specific mortality: A structural approach," Population Studies, Taylor & Francis Journals, vol. 73(2), pages 217-232, May.
    10. Li, Ruosha & Peng, Limin, 2014. "Varying coefficient subdistribution regression for left-truncated semi-competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 65-78.
    11. Klemen Pavlič & Torben Martinussen & Per Kragh Andersen, 2019. "Goodness of fit tests for estimating equations based on pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 189-205, April.
    12. Yanzhi Wang & Brent R. Logan, 2019. "Testing for center effects on survival and competing risks outcomes using pseudo-value regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 206-228, April.
    13. Ying Cui & Limin Peng, 2022. "Assessing dynamic covariate effects with survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 675-699, October.
    14. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    15. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    16. H. Joseph Newton & Nicholas J. Cox, 2013. "The Stata Journal Editors' Prize 2013: Erik Thorlund Parner and Per Kragh Andersen," Stata Journal, StataCorp LP, vol. 13(4), pages 669-671, December.
    17. Vanessa di Lego & Cássio M. Turra & Cibele Cesar, 2017. "Mortality selection among adults in Brazil: The survival advantage of Air Force officers," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(41), pages 1339-1350.
    18. Su, Pei-Fang & Chi, Yunchan & Li, Chung-I & Shyr, Yu & Liao, Yi-De, 2011. "Analyzing survival curves at a fixed point in time for paired and clustered right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1617-1628, April.
    19. Miguel A Delgado & Andrés García-Suaza & Pedro H C Sant’Anna, 2022. "Distribution regression in duration analysis: an application to unemployment spells [Lecture notes in statistics: Proceedings]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 675-698.
    20. Wycinka Ewa & Jurkiewicz Tomasz, 2019. "Survival Regression Models For Single Events And Competing Risks Based On Pseudo-Observations," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 171-188, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:29:y:2023:i:3:d:10.1007_s10985-023-09597-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.