IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v131y2014icp65-78.html
   My bibliography  Save this article

Varying coefficient subdistribution regression for left-truncated semi-competing risks data

Author

Listed:
  • Li, Ruosha
  • Peng, Limin

Abstract

Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying coefficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov–Smirnov type and Cramér–Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method.

Suggested Citation

  • Li, Ruosha & Peng, Limin, 2014. "Varying coefficient subdistribution regression for left-truncated semi-competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 65-78.
  • Handle: RePEc:eee:jmvana:v:131:y:2014:i:c:p:65-78
    DOI: 10.1016/j.jmva.2014.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14001353
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas H. Scheike & Mei‐Jie Zhang, 2007. "Direct Modelling of Regression Effects for Transition Probabilities in Multistate Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 17-32, March.
    2. Ruosha Li & Limin Peng, 2011. "Quantile Regression for Left-Truncated Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 67(3), pages 701-710, September.
    3. John P. Klein & Per Kragh Andersen, 2005. "Regression Modeling of Competing Risks Data Based on Pseudovalues of the Cumulative Incidence Function," Biometrics, The International Biometric Society, vol. 61(1), pages 223-229, March.
    4. L. Peng & J. P. Fine, 2007. "Nonparametric quantile inference with competing–risks data," Biometrika, Biometrika Trust, vol. 94(3), pages 735-744.
    5. Peng, Limin & Fine, Jason P., 2009. "Competing Risks Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1440-1453.
    6. Thomas H. Scheike & Mei-Jie Zhang & Thomas A. Gerds, 2008. "Predicting cumulative incidence probability by direct binomial regression," Biometrika, Biometrika Trust, vol. 95(1), pages 205-220.
    7. David Oakes, 2008. "On consistency of Kendall's tau under censoring," Biometrika, Biometrika Trust, vol. 95(4), pages 997-1001.
    8. A. Adam Ding & Guangkai Shi & Weijing Wang & Jin‐Jian Hsieh, 2009. "Marginal Regression Analysis for Semi‐Competing Risks Data Under Dependent Censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 481-500, September.
    9. Peng, Limin & Fine, Jason P., 2006. "Rank Estimation of Accelerated Lifetime Models With Dependent Censoring," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1085-1093, September.
    10. Ronald B. Geskus, 2011. "Cause-Specific Cumulative Incidence Estimation and the Fine and Gray Model Under Both Left Truncation and Right Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 39-49, March.
    11. Jing Qian & Limin Peng, 2010. "Censored quantile regression with partially functional effects," Biometrika, Biometrika Trust, vol. 97(4), pages 839-850.
    12. Hongyu Jiang & Jason P. Fine & Rick Chappell, 2005. "Semiparametric Analysis of Survival Data with Left Truncation and Dependent Right Censoring," Biometrics, The International Biometric Society, vol. 61(2), pages 567-575, June.
    13. Limin Peng & Yijian Huang, 2007. "Survival analysis with temporal covariate effects," Biometrika, Biometrika Trust, vol. 94(3), pages 719-733.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2023. "Regression models for censored time-to-event data using infinitesimal jack-knife pseudo-observations, with applications to left-truncation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 654-671, July.
    2. Ying Cui & Limin Peng, 2022. "Assessing dynamic covariate effects with survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 675-699, October.
    3. Huijuan Ma & Limin Peng & Zhumin Zhang & HuiChuan J. Lai, 2018. "Generalized accelerated recurrence time model for multivariate recurrent event data with missing event type," Biometrics, The International Biometric Society, vol. 74(3), pages 954-965, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxue Jin & Tze Leung Lai, 2017. "A new approach to regression analysis of censored competing-risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 605-625, October.
    2. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    3. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    4. Lee, Minjung & Han, Junhee, 2016. "Covariate-adjusted quantile inference with competing risks," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 57-63.
    5. Soyoung Kim & Yayun Xu & Mei‐Jie Zhang & Kwang‐Woo Ahn, 2020. "Stratified proportional subdistribution hazards model with covariate‐adjusted censoring weight for case‐cohort studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1222-1242, December.
    6. Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    7. Michael J. Martens & Brent R. Logan, 2020. "Group sequential tests for treatment effect on survival and cumulative incidence at a fixed time point," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 603-623, July.
    8. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2023. "Regression models for censored time-to-event data using infinitesimal jack-knife pseudo-observations, with applications to left-truncation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 654-671, July.
    9. J. E. Soh & Yijian Huang, 2021. "A varying-coefficient model for gap times between recurrent events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 437-459, July.
    10. Yijian Huang, 2017. "Restoration of Monotonicity Respecting in Dynamic Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 613-622, April.
    11. Yayuan Zhu & Ziqi Chen & Jerald F. Lawless, 2022. "Semiparametric analysis of interval‐censored failure time data with outcome‐dependent observation schemes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 236-264, March.
    12. Xiaomeng Qi & Zhangsheng Yu, 2023. "Kernel regression for cause-specific hazard models with time-dependent coefficients," Computational Statistics, Springer, vol. 38(1), pages 263-283, March.
    13. Tianyu Zhan & Douglas E. Schaubel, 2019. "Semiparametric temporal process regression of survival-out-of-hospital," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 322-340, April.
    14. Lee, Unkyung & Sun, Yanqing & Scheike, Thomas H. & Gilbert, Peter B., 2018. "Analysis of generalized semiparametric regression models for cumulative incidence functions with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 59-79.
    15. Ambrogi, Federico & Biganzoli, Elia & Boracchi, Patrizia, 2009. "Estimating crude cumulative incidences through multinomial logit regression on discrete cause-specific hazards," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2767-2779, May.
    16. Hsieh, Jin-Jian & Hsu, Chia-Hao, 2018. "Estimation of the survival function with redistribution algorithm under semi-competing risks data," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 1-6.
    17. Xu Zhang & Haci Akcin & Hyun Lim, 2011. "Regression analysis of competing risks data via semi-parametric additive hazard model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(3), pages 357-381, August.
    18. Frank Eriksson & Jianing Li & Thomas Scheike & Mei‐Jie Zhang, 2015. "The proportional odds cumulative incidence model for competing risks," Biometrics, The International Biometric Society, vol. 71(3), pages 687-695, September.
    19. Yanzhi Wang & Brent R. Logan, 2019. "Testing for center effects on survival and competing risks outcomes using pseudo-value regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 206-228, April.
    20. Teng Fei & John Hanfelt & Limin Peng, 2023. "Evaluating the association between latent classes and competing risks outcomes with multiphenotype data," Biometrics, The International Biometric Society, vol. 79(1), pages 488-501, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:131:y:2014:i:c:p:65-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.