IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v36y2009i3p481-500.html
   My bibliography  Save this article

Marginal Regression Analysis for Semi‐Competing Risks Data Under Dependent Censoring

Author

Listed:
  • A. ADAM DING
  • GUANGKAI SHI
  • WEIJING WANG
  • JIN‐JIAN HSIEH

Abstract

. Multiple events data are commonly seen in medical applications. There are two types of events, namely terminal and non‐terminal. Statistical analysis for non‐terminal events is complicated due to dependent censoring. Consequently, joint modelling and inference are often needed to avoid the problem of non‐identifiability. This article considers regression analysis for multiple events data with major interest in a non‐terminal event such as disease progression. We generalize the technique of artificial censoring, which is a popular way to handle dependent censoring, under flexible model assumptions on the two types of events. The proposed method is applied to analyse a data set of bone marrow transplantation.

Suggested Citation

  • A. Adam Ding & Guangkai Shi & Weijing Wang & Jin‐Jian Hsieh, 2009. "Marginal Regression Analysis for Semi‐Competing Risks Data Under Dependent Censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 481-500, September.
  • Handle: RePEc:bla:scjsta:v:36:y:2009:i:3:p:481-500
    DOI: 10.1111/j.1467-9469.2008.00635.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2008.00635.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2008.00635.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weijing Wang, 2003. "Estimating the association parameter for copula models under dependent censoring," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 257-273, February.
    2. Peng, Limin & Fine, Jason P., 2006. "Rank Estimation of Accelerated Lifetime Models With Dependent Censoring," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1085-1093, September.
    3. Debashis Ghosh & D. Y. Lin, 2003. "Semiparametric Analysis of Recurrent Events Data in the Presence of Dependent Censoring," Biometrics, The International Biometric Society, vol. 59(4), pages 877-885, December.
    4. Zhezhen Jin, 2003. "Rank-based inference for the accelerated failure time model," Biometrika, Biometrika Trust, vol. 90(2), pages 341-353, June.
    5. D. Y. Lin & L. J. Wei & Z. Ying, 2002. "Model-Checking Techniques Based on Cumulative Residuals," Biometrics, The International Biometric Society, vol. 58(1), pages 1-12, March.
    6. Shu-Hui Chang, 2000. "A Two-Sample Comparison for Multiple Ordered Event Data," Biometrics, The International Biometric Society, vol. 56(1), pages 183-189, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.
    2. Renke Zhou & Hong Zhu & Melissa Bondy & Jing Ning, 2016. "Semiparametric model for semi-competing risks data with application to breast cancer study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 456-471, July.
    3. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    4. Hsieh, Jin-Jian & Hsu, Chia-Hao, 2018. "Estimation of the survival function with redistribution algorithm under semi-competing risks data," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 1-6.
    5. Heuchenne, Cedric & Laurent, Stephane & Legrand, Catherine & Van Keilegom, Ingrid, 2011. "Likelihood based inference for semi-competing risks," LIDAM Discussion Papers ISBA 2011022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Li, Ruosha & Peng, Limin, 2014. "Varying coefficient subdistribution regression for left-truncated semi-competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 65-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, A. Adam, 2010. "Identifiability conditions for covariate effects model on survival times under informative censoring," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 911-915, June.
    2. Huazhen Lin & Ling Zhou & Chunhong Li & Yi Li, 2014. "Semiparametric transformation models for semicompeting survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 599-607, September.
    3. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    4. Debashis Ghosh, 2009. "On Assessing Surrogacy in a Single Trial Setting Using a Semicompeting Risks Paradigm," Biometrics, The International Biometric Society, vol. 65(2), pages 521-529, June.
    5. Tianxi Cai & Lu Tian & L. J. Wei, 2004. "Semi-parametric Box-Cox Power Transformation Models for Censored Survival Observations," Harvard University Biostatistics Working Paper Series 1006, Berkeley Electronic Press.
    6. Gongjun Xu & Sy Han Chiou & Chiung-Yu Huang & Mei-Cheng Wang & Jun Yan, 2017. "Joint Scale-Change Models for Recurrent Events and Failure Time," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 794-805, April.
    7. Menggang Yu & Bin Nan, 2010. "Regression Calibration in Semiparametric Accelerated Failure Time Models," Biometrics, The International Biometric Society, vol. 66(2), pages 405-414, June.
    8. Shigeyuki Matsui, 2004. "Analysis of Times to Repeated Events in Two-Arm Randomized Trials with Noncompliance and Dependent Censoring," Biometrics, The International Biometric Society, vol. 60(4), pages 965-976, December.
    9. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    10. Lajmi Lakhal & Louis-Paul Rivest & Belkacem Abdous, 2008. "Estimating Survival and Association in a Semicompeting Risks Model," Biometrics, The International Biometric Society, vol. 64(1), pages 180-188, March.
    11. Hsieh, Jin-Jian & Hsu, Chia-Hao, 2018. "Estimation of the survival function with redistribution algorithm under semi-competing risks data," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 1-6.
    12. Weibin Zhong & Guoqing Diao, 2023. "Semiparametric Density Ratio Model for Survival Data with a Cure Fraction," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 217-241, April.
    13. Menggang Yu, 2016. "Improving estimation efficiency for semi-competing risks data with partially observed terminal event," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 860-874, October.
    14. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    15. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    16. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    17. Giuliana Cortese & Thomas H. Scheike, 2022. "Efficient estimation of the marginal mean of recurrent events," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1787-1821, November.
    18. Xu, Linzhi & Zhang, Jiajia, 2010. "Multiple imputation method for the semiparametric accelerated failure time mixture cure model," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1808-1816, July.
    19. Liu, Juxin & Ma, Yanyuan & Johnstone, Jill, 2020. "A goodness-of-fit test for zero-inflated Poisson mixed effects models in tree abundance studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    20. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:36:y:2009:i:3:p:481-500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.