IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v22y2016i3d10.1007_s10985-015-9344-x.html
   My bibliography  Save this article

Semiparametric model for semi-competing risks data with application to breast cancer study

Author

Listed:
  • Renke Zhou

    (Baylor College of Medicine
    The University of Texas School of Public Health)

  • Hong Zhu

    (The University of Texas Southwestern Medical Center)

  • Melissa Bondy

    (Baylor College of Medicine)

  • Jing Ning

    (The University of Texas MD Anderson Cancer Center)

Abstract

For many forms of cancer, patients will receive the initial regimen of treatments, then experience cancer progression and eventually die of the disease. Understanding the disease process in patients with cancer is essential in clinical, epidemiological and translational research. One challenge in analyzing such data is that death dependently censors cancer progression (e.g., recurrence), whereas progression does not censor death. We deal with the informative censoring by first selecting a suitable copula model through an exploratory diagnostic approach and then developing an inference procedure to simultaneously estimate the marginal survival function of cancer relapse and an association parameter in the copula model. We show that the proposed estimators possess consistency and weak convergence. We use simulation studies to evaluate the finite sample performance of the proposed method, and illustrate it through an application to data from a study of early stage breast cancer.

Suggested Citation

  • Renke Zhou & Hong Zhu & Melissa Bondy & Jing Ning, 2016. "Semiparametric model for semi-competing risks data with application to breast cancer study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 456-471, July.
  • Handle: RePEc:spr:lifeda:v:22:y:2016:i:3:d:10.1007_s10985-015-9344-x
    DOI: 10.1007/s10985-015-9344-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-015-9344-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-015-9344-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weijing Wang, 2003. "Estimating the association parameter for copula models under dependent censoring," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 257-273, February.
    2. Jinfeng Xu & John D. Kalbfleisch & Beechoo Tai, 2010. "Statistical Analysis of Illness–Death Processes and Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 66(3), pages 716-725, September.
    3. A. Adam Ding & Guangkai Shi & Weijing Wang & Jin‐Jian Hsieh, 2009. "Marginal Regression Analysis for Semi‐Competing Risks Data Under Dependent Censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 481-500, September.
    4. Jin‐Jian Hsieh & Weijing Wang & A. Adam Ding, 2008. "Regression analysis based on semicompeting risks data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 3-20, February.
    5. Hongyu Jiang & Jason P. Fine & Michael R. Kosorok & Rick Chappell, 2005. "Pseudo Self‐Consistent Estimation of a Copula Model with Informative Censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(1), pages 1-20, March.
    6. R.D. Gill, 1980. "Censoring and Stochastic Integrals," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 34(2), pages 124-124, June.
    7. Limin Peng & Jason P. Fine, 2007. "Regression Modeling of Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 63(1), pages 96-108, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Piao & Jing Ning & Yu Shen, 2019. "Semiparametric model for bivariate survival data subject to biased sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 409-429, April.
    2. Xifen Huang & Jinfeng Xu & Hao Guo & Jianhua Shi & Wenjie Zhao, 2022. "An MM Algorithm for the Frailty-Based Illness Death Model with Semi-Competing Risks Data," Mathematics, MDPI, vol. 10(19), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    2. Hsieh, Jin-Jian & Hsu, Chia-Hao, 2018. "Estimation of the survival function with redistribution algorithm under semi-competing risks data," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 1-6.
    3. Menggang Yu & Constantin T. Yiannoutsos, 2015. "Marginal and Conditional Distribution Estimation from Double-sampled Semi-competing Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 87-103, March.
    4. Heuchenne, Cedric & Laurent, Stephane & Legrand, Catherine & Van Keilegom, Ingrid, 2011. "Likelihood based inference for semi-competing risks," LIDAM Discussion Papers ISBA 2011022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Lajmi Lakhal & Louis-Paul Rivest & Belkacem Abdous, 2008. "Estimating Survival and Association in a Semicompeting Risks Model," Biometrics, The International Biometric Society, vol. 64(1), pages 180-188, March.
    6. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    7. Huazhen Lin & Ling Zhou & Chunhong Li & Yi Li, 2014. "Semiparametric transformation models for semicompeting survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 599-607, September.
    8. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    9. Dongdong Li & X. Joan Hu & Mary L. McBride & John J. Spinelli, 2020. "Multiple event times in the presence of informative censoring: modeling and analysis by copulas," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 573-602, July.
    10. Yang Li & Hao Liu & Xiaoshen Wang & Wanzhu Tu, 2022. "Semi‐parametric time‐to‐event modelling of lengths of hospital stays," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1623-1647, November.
    11. Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.
    12. Peng, Mengjiao & Xiang, Liming & Wang, Shanshan, 2018. "Semiparametric regression analysis of clustered survival data with semi-competing risks," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 53-70.
    13. Xifen Huang & Jinfeng Xu & Hao Guo & Jianhua Shi & Wenjie Zhao, 2022. "An MM Algorithm for the Frailty-Based Illness Death Model with Semi-Competing Risks Data," Mathematics, MDPI, vol. 10(19), pages 1-13, October.
    14. Jing Yang & Limin Peng, 2018. "Estimating cross quantile residual ratio with left-truncated semi-competing risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 652-674, October.
    15. Xiaodong Luo & Hong Tian & Surya Mohanty & Wei Yann Tsai, 2015. "An alternative approach to confidence interval estimation for the win ratio statistic," Biometrics, The International Biometric Society, vol. 71(1), pages 139-145, March.
    16. Xifen Huang & Jinfeng Xu, 2022. "Nonparametric Sieve Maximum Likelihood Estimation of Semi-Competing Risks Data," Mathematics, MDPI, vol. 10(13), pages 1-10, June.
    17. Chia-Hui Huang, 2019. "Mixture regression models for the gap time distributions and illness–death processes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 168-188, January.
    18. Qui Tran & Kelley M. Kidwell & Alex Tsodikov, 2018. "A joint model of cancer incidence, metastasis, and mortality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 385-406, July.
    19. Ding, A. Adam, 2010. "Identifiability conditions for covariate effects model on survival times under informative censoring," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 911-915, June.
    20. Beate Sildnes & Bo Henry Lindqvist, 2018. "Modeling of semi-competing risks by means of first passage times of a stochastic process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 153-175, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:22:y:2016:i:3:d:10.1007_s10985-015-9344-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.