IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v71y2015i1p139-145.html
   My bibliography  Save this article

An alternative approach to confidence interval estimation for the win ratio statistic

Author

Listed:
  • Xiaodong Luo
  • Hong Tian
  • Surya Mohanty
  • Wei Yann Tsai

Abstract

No abstract is available for this item.

Suggested Citation

  • Xiaodong Luo & Hong Tian & Surya Mohanty & Wei Yann Tsai, 2015. "An alternative approach to confidence interval estimation for the win ratio statistic," Biometrics, The International Biometric Society, vol. 71(1), pages 139-145, March.
  • Handle: RePEc:bla:biomet:v:71:y:2015:i:1:p:139-145
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12225
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donglin Zeng & D. Y. Lin, 2009. "Semiparametric Transformation Models with Random Effects for Joint Analysis of Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 65(3), pages 746-752, September.
    2. B. J. Cowling & J. L. Hutton & J. E. H. Shaw, 2006. "Joint modelling of event counts and survival times," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(1), pages 31-39, January.
    3. Debashis Ghosh & D. Y. Lin, 2000. "Nonparametric Analysis of Recurrent Events and Death," Biometrics, The International Biometric Society, vol. 56(2), pages 554-562, June.
    4. Lei Liu & Robert A. Wolfe & Xuelin Huang, 2004. "Shared Frailty Models for Recurrent Events and a Terminal Event," Biometrics, The International Biometric Society, vol. 60(3), pages 747-756, September.
    5. Jinfeng Xu & John D. Kalbfleisch & Beechoo Tai, 2010. "Statistical Analysis of Illness–Death Processes and Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 66(3), pages 716-725, September.
    6. Limin Peng & Jason P. Fine, 2007. "Regression Modeling of Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 63(1), pages 96-108, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Mao & Tuo Wang, 2021. "A class of proportional win‐fractions regression models for composite outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1265-1275, December.
    2. Lu Mao, 2019. "On the alternative hypotheses for the win ratio," Biometrics, The International Biometric Society, vol. 75(1), pages 347-351, March.
    3. Lu Mao & KyungMann Kim & Xinran Miao, 2022. "Sample size formula for general win ratio analysis," Biometrics, The International Biometric Society, vol. 78(3), pages 1257-1268, September.
    4. Dennis Dobler & Markus Pauly, 2018. "Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 639-658, September.
    5. Xiaodong Luo & Hui Quan, 2020. "Some Meaningful Weighted Log-Rank and Weighted Win Loss Statistics," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 216-224, July.
    6. Xiaodong Luo & Hong Tian & Surya Mohanty & Wei Yann Tsai, 2019. "Rejoinder to “on the alternative hypotheses for the win ratio”," Biometrics, The International Biometric Society, vol. 75(1), pages 352-354, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    2. Qui Tran & Kelley M. Kidwell & Alex Tsodikov, 2018. "A joint model of cancer incidence, metastasis, and mortality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 385-406, July.
    3. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    4. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    5. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    6. Yassin Mazroui & Audrey Mauguen & Simone Mathoulin-Pélissier & Gaetan MacGrogan & Véronique Brouste & Virginie Rondeau, 2016. "Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(2), pages 191-215, April.
    7. Xifen Huang & Jinfeng Xu & Hao Guo & Jianhua Shi & Wenjie Zhao, 2022. "An MM Algorithm for the Frailty-Based Illness Death Model with Semi-Competing Risks Data," Mathematics, MDPI, vol. 10(19), pages 1-13, October.
    8. Xiaoyu Che & John Angus, 2016. "A new joint model of recurrent event data with the additive hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 763-787, October.
    9. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    10. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    11. Giuliana Cortese & Thomas H. Scheike, 2022. "Efficient estimation of the marginal mean of recurrent events," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1787-1821, November.
    12. Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.
    13. Qing Pan & Douglas E. Schaubel, 2009. "Flexible Estimation of Differences in Treatment-Specific Recurrent Event Means in the Presence of a Terminating Event," Biometrics, The International Biometric Society, vol. 65(3), pages 753-761, September.
    14. Yang Li & Hao Liu & Xiaoshen Wang & Wanzhu Tu, 2022. "Semi‐parametric time‐to‐event modelling of lengths of hospital stays," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1623-1647, November.
    15. Dongxiao Han & Xiaogang Su & Liuquan Sun & Zhou Zhang & Lei Liu, 2020. "Variable selection in joint frailty models of recurrent and terminal events," Biometrics, The International Biometric Society, vol. 76(4), pages 1330-1339, December.
    16. Gongjun Xu & Sy Han Chiou & Chiung-Yu Huang & Mei-Cheng Wang & Jun Yan, 2017. "Joint Scale-Change Models for Recurrent Events and Failure Time," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 794-805, April.
    17. Jinfeng Xu & John D. Kalbfleisch & Beechoo Tai, 2010. "Statistical Analysis of Illness–Death Processes and Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 66(3), pages 716-725, September.
    18. Xuelin Huang & Lei Liu, 2007. "A Joint Frailty Model for Survival and Gap Times Between Recurrent Events," Biometrics, The International Biometric Society, vol. 63(2), pages 389-397, June.
    19. Donglin Zeng & D. Y. Lin, 2009. "Semiparametric Transformation Models with Random Effects for Joint Analysis of Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 65(3), pages 746-752, September.
    20. Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:71:y:2015:i:1:p:139-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.