IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v28y2025i1d10.1007_s10951-024-00826-9.html
   My bibliography  Save this article

Scheduling of e-commerce packaging machines: blocking machines and their impact on the performance–waste tradeoff

Author

Listed:
  • Dirk Briskorn

    (Professur für BWL, insbesondere Produktion und Logistik)

  • Nils Boysen

    (Lehrstuhl für Operations Management)

  • Lennart Zey

    (Professur für BWL, insbesondere Produktion und Logistik)

Abstract

To streamline their fulfillment processes, many e-commerce retailers today use automated packaging machines for their outbound parcels. An important performance–waste tradeoff is associated with these machines: To reduce packaging waste when handling different sized goods, packaging machines should be able to handle different carton sizes. However, more carton sizes lead to a more involved scheduling process, so that the throughput performance deteriorates (and vice versa). To investigate this tradeoff, this paper develops scheduling procedures for a specific type of packaging machine, called blocking machines. These packaging machines provide multiple back-to-back packaging devices, each continuously processing a dedicated carton size, but blocking each other whenever incoming goods are not properly ordered according to carton sizes on the infeed conveyor. To reduce the resulting throughput loss, we derive various scheduling problems for optimizing the inflow of goods, provide a thorough analysis of the computational complexity, and derive an exact dynamic programming approach that is polynomial in the number of orders to be packed. This allows us to solve even large real-world instances to proven optimality with which we can analyze the performance–waste tradeoff of blocking machines.

Suggested Citation

  • Dirk Briskorn & Nils Boysen & Lennart Zey, 2025. "Scheduling of e-commerce packaging machines: blocking machines and their impact on the performance–waste tradeoff," Journal of Scheduling, Springer, vol. 28(1), pages 101-120, February.
  • Handle: RePEc:spr:jsched:v:28:y:2025:i:1:d:10.1007_s10951-024-00826-9
    DOI: 10.1007/s10951-024-00826-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-024-00826-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-024-00826-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Shisheng & Ng, C.T. & Yuan, Jinjiang, 2011. "Group scheduling and due date assignment on a single machine," International Journal of Production Economics, Elsevier, vol. 130(2), pages 230-235, April.
    2. Pirmin Fontaine & Stefan Minner, 2023. "A Branch-and-Repair Method for Three-Dimensional Bin Selection and Packing in E-Commerce," Operations Research, INFORMS, vol. 71(1), pages 273-288, January.
    3. Shih Jia Lee & Ek Peng Chew & Loo Hay Lee & Julius Thio, 2015. "A study on crate sizing problems," International Journal of Production Research, Taylor & Francis Journals, vol. 53(11), pages 3341-3353, June.
    4. Leonard Adler & Nelson Fraiman & Edward Kobacker & Michael Pinedo & Juan Carlos Plotnicoff & Tso Pang Wu, 1993. "BPSS: A Scheduling Support System for the Packaging Industry," Operations Research, INFORMS, vol. 41(4), pages 641-648, August.
    5. Boysen, Nils & Stephan, Konrad, 2016. "A survey on single crane scheduling in automated storage/retrieval systems," European Journal of Operational Research, Elsevier, vol. 254(3), pages 691-704.
    6. C. Ng & T. Cheng & Adam Janiak & Mikhail Kovalyov, 2005. "Group Scheduling with Controllable Setup and Processing Times: Minimizing Total Weighted Completion Time," Annals of Operations Research, Springer, vol. 133(1), pages 163-174, January.
    7. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    8. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    9. Li, Shisheng & Ng, C.T. & Yuan, Jinjiang, 2011. "Scheduling deteriorating jobs with CON/SLK due date assignment on a single machine," International Journal of Production Economics, Elsevier, vol. 131(2), pages 747-751, June.
    10. Janiak, Adam & Kovalyov, Mikhail Y. & Portmann, Marie-Claude, 2005. "Single machine group scheduling with resource dependent setup and processing times," European Journal of Operational Research, Elsevier, vol. 162(1), pages 112-121, April.
    11. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    12. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    13. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Barbato & Alberto Ceselli & Giovanni Righini, 2024. "A polynomial-time dynamic programming algorithm for an optimal picking problem in automated warehouses," Journal of Scheduling, Springer, vol. 27(4), pages 393-407, August.
    2. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    3. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    4. Boysen, Nils & de Koster, René, 2025. "50 years of warehousing research—An operations research perspective," European Journal of Operational Research, Elsevier, vol. 320(3), pages 449-464.
    5. van der Gaast, Jelmer Pier & Weidinger, Felix, 2022. "A deep learning approach for the selection of an order picking system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 530-543.
    6. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    7. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    8. Lu Zhen & Jingwen Wu & Haolin Li & Zheyi Tan & Yingying Yuan, 2023. "Scheduling multiple types of equipment in an automated warehouse," Annals of Operations Research, Springer, vol. 322(2), pages 1119-1141, March.
    9. Boysen, Nils & Schwerdfeger, Stefan & W. Ulmer, Marlin, 2023. "Robotized sorting systems: Large-scale scheduling under real-time conditions with limited lookahead," European Journal of Operational Research, Elsevier, vol. 310(2), pages 582-596.
    10. Xuefei Yang & Manuel Ostermeier & Alexander Hübner, 2024. "Winning the race to customers with micro-fulfillment centers: an approach for network planning in quick commerce," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(2), pages 295-334, June.
    11. Tutam, Mahmut & De Koster, René, 2024. "To walk or not to walk? Designing intelligent order picking warehouses with collaborative robots," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    12. Žulj, Ivan & Salewski, Hagen & Goeke, Dominik & Schneider, Michael, 2022. "Order batching and batch sequencing in an AMR-assisted picker-to-parts system," European Journal of Operational Research, Elsevier, vol. 298(1), pages 182-201.
    13. Russell Allgor & Tolga Cezik & Daniel Chen, 2023. "Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively," Interfaces, INFORMS, vol. 53(4), pages 266-282, July.
    14. Maximilian Löffler & Nils Boysen & Michael Schneider, 2022. "Picker Routing in AGV-Assisted Order Picking Systems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 440-462, January.
    15. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    16. Maximilian Löffler & Michael Schneider & Ivan Žulj, 2023. "Cost-neutral reduction of infection risk in picker-to-parts warehousing systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 151-179, March.
    17. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    18. Bock, Stefan & Bomsdorf, Stefan & Boysen, Nils & Schneider, Michael, 2025. "A survey on the Traveling Salesman Problem and its variants in a warehousing context," European Journal of Operational Research, Elsevier, vol. 322(1), pages 1-14.
    19. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    20. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:28:y:2025:i:1:d:10.1007_s10951-024-00826-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.