IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i2d10.1007_s10959-023-01290-5.html
   My bibliography  Save this article

Explicit Approximation of Invariant Measure for Stochastic Delay Differential Equations with the Nonlinear Diffusion Term

Author

Listed:
  • Xiaoyue Li

    (Tiangong University)

  • Xuerong Mao

    (University of Strathclyde)

  • Guoting Song

    (Northeast Normal University)

Abstract

To our knowledge, existing measure approximation theory requires the diffusion term of the stochastic delay differential equations (SDDEs) to be globally Lipschitz continuous. Our work is to develop a new explicit numerical method for SDDEs with nonlinear diffusion term and establish the measure approximation theory. Precisely, we construct a function-valued explicit truncated Euler–Maruyama segment process and prove that it admits a unique ergodic numerical invariant measure. We also prove that the numerical invariant measure converges to the underlying invariant measure of the SDDE in the Fortet–Mourier distance. Finally, we give an example and numerical simulations to support our theory.

Suggested Citation

  • Xiaoyue Li & Xuerong Mao & Guoting Song, 2024. "Explicit Approximation of Invariant Measure for Stochastic Delay Differential Equations with the Nonlinear Diffusion Term," Journal of Theoretical Probability, Springer, vol. 37(2), pages 1850-1881, June.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:2:d:10.1007_s10959-023-01290-5
    DOI: 10.1007/s10959-023-01290-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-023-01290-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-023-01290-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Chenggui & Mao, Xuerong, 2003. "Asymptotic stability in distribution of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 277-291, February.
    2. Cui, Jianbo & Hong, Jialin & Sun, Liying, 2021. "Weak convergence and invariant measure of a full discretization for parabolic SPDEs with non-globally Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 55-93.
    3. Mei, Hongwei & Yin, George, 2015. "Convergence and convergence rates for approximating ergodic means of functions of solutions to stochastic differential equations with Markov switching," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3104-3125.
    4. Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Shuaibin & Li, Xiaotong & Liu, Zhuoqi, 2023. "Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    2. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    3. Lemaire, Vincent, 2007. "An adaptive scheme for the approximation of dissipative systems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1491-1518, October.
    4. Samson, Adeline & Tamborrino, Massimiliano & Tubikanec, Irene, 2025. "Inference for the stochastic FitzHugh-Nagumo model from real action potential data via approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).
    5. di Nunno, Giulia & Ortiz–Latorre, Salvador & Petersson, Andreas, 2023. "SPDE bridges with observation noise and their spatial approximation," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 170-207.
    6. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    7. Khieu, Hoang & Wälde, Klaus, 2023. "Capital income risk and the dynamics of the wealth distribution," Economic Modelling, Elsevier, vol. 122(C).
    8. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    9. Song, Renming & Xie, Longjie, 2020. "Well-posedness and long time behavior of singular Langevin stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1879-1896.
    10. Wälde, Klaus & Bayer, Christian, 2011. "Describing the Dynamics of Distribution in Search and Matching Models by Fokker-Planck Equations," VfS Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48736, Verein für Socialpolitik / German Economic Association.
    11. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    12. Gilles Pagès & Clément Rey, 2023. "Discretization of the Ergodic Functional Central Limit Theorem," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-44, March.
    13. Qiu Lin & Ruisheng Qi, 2023. "Optimal Weak Order and Approximation of the Invariant Measure with a Fully-Discrete Euler Scheme for Semilinear Stochastic Parabolic Equations with Additive Noise," Mathematics, MDPI, vol. 12(1), pages 1-29, December.
    14. ur Rahman, Ghaus & Badshah, Qaisar & Agarwal, Ravi P. & Islam, Saeed, 2021. "Ergodicity & dynamical aspects of a stochastic childhood disease model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 738-764.
    15. Zhang, Tian & Chen, Huabin, 2019. "The stability with a general decay of stochastic delay differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 294-307.
    16. Li, Zhi & Zhang, Wei, 2017. "Stability in distribution of stochastic Volterra–Levin equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 20-27.
    17. Casella, Bruno & Roberts, Gareth O. & Stramer, Osnat, 2011. "Stability of Partially Implicit Langevin Schemes and Their MCMC Variants," MPRA Paper 95220, University Library of Munich, Germany.
    18. Jianhai Bao & Feng‐Yu Wang & Chenggui Yuan, 2020. "Ergodicity for neutral type SDEs with infinite length of memory," Mathematische Nachrichten, Wiley Blackwell, vol. 293(9), pages 1675-1690, September.
    19. Pavliotis, Grigorios A. & Reich, Sebastian & Zanoni, Andrea, 2025. "Filtered data based estimators for stochastic processes driven by colored noise," Stochastic Processes and their Applications, Elsevier, vol. 181(C).
    20. Tan, Li & Jin, Wei & Suo, Yongqiang, 2015. "Stability in distribution of neutral stochastic functional differential equations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 27-36.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:2:d:10.1007_s10959-023-01290-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.