IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v181y2025ics0304414924002667.html

Filtered data based estimators for stochastic processes driven by colored noise

Author

Listed:
  • Pavliotis, Grigorios A.
  • Reich, Sebastian
  • Zanoni, Andrea

Abstract

We consider the problem of estimating unknown parameters in stochastic differential equations driven by colored noise, which we model as a sequence of Gaussian stationary processes with decreasing correlation time. We aim to infer parameters in the limit equation, driven by white noise, given observations of the colored noise dynamics. We consider both the maximum likelihood and the stochastic gradient descent in continuous time estimators, and we propose to modify them by including filtered data. We provide a convergence analysis for our estimators showing their asymptotic unbiasedness in a general setting and asymptotic normality under a simplified scenario.

Suggested Citation

  • Pavliotis, Grigorios A. & Reich, Sebastian & Zanoni, Andrea, 2025. "Filtered data based estimators for stochastic processes driven by colored noise," Stochastic Processes and their Applications, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:spapps:v:181:y:2025:i:c:s0304414924002667
    DOI: 10.1016/j.spa.2024.104558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924002667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sharrock, Louis & Kantas, Nikolas & Parpas, Panos & Pavliotis, Grigorios A., 2023. "Online parameter estimation for the McKean–Vlasov stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 481-546.
    2. Papavasiliou, A. & Pavliotis, G.A. & Stuart, A.M., 2009. "Maximum likelihood drift estimation for multiscale diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3173-3210, October.
    3. Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
    4. Della Maestra, Laetitia & Hoffmann, Marc, 2023. "The LAN property for McKean–Vlasov models in a mean-field regime," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 109-146.
    5. Giuseppe Pesce & Austin McDaniel & Scott Hottovy & Jan Wehr & Giovanni Volpe, 2013. "Stratonovich-to-Itô transition in noisy systems with multiplicative feedback," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    6. Gailus, Siragan & Spiliopoulos, Konstantinos, 2017. "Statistical inference for perturbed multiscale dynamical systems," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 419-448.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ur Rahman, Ghaus & Badshah, Qaisar & Agarwal, Ravi P. & Islam, Saeed, 2021. "Ergodicity & dynamical aspects of a stochastic childhood disease model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 738-764.
    2. Mattingly, Jonathan C. & McKinley, Scott A. & Pillai, Natesh S., 2012. "Geometric ergodicity of a bead–spring pair with stochastic Stokes forcing," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 3953-3979.
    3. Lemaire, Vincent, 2007. "An adaptive scheme for the approximation of dissipative systems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1491-1518, October.
    4. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    5. Samson, Adeline & Tamborrino, Massimiliano & Tubikanec, Irene, 2025. "Inference for the stochastic FitzHugh-Nagumo model from real action potential data via approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).
    6. Bao, Jianhai & Wang, Jian, 2022. "Coupling approach for exponential ergodicity of stochastic Hamiltonian systems with Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 114-142.
    7. Jiatu Cai & Masaaki Fukasawa, 2014. "Asymptotic replication with modified volatility under small transaction costs," Papers 1408.5677, arXiv.org.
    8. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    9. Jianhai Bao & Xing Huang & Chenggui Yuan, 2019. "Convergence Rate of Euler–Maruyama Scheme for SDEs with Hölder–Dini Continuous Drifts," Journal of Theoretical Probability, Springer, vol. 32(2), pages 848-871, June.
    10. Bao, Jianhai & Wang, Feng-Yu & Yuan, Chenggui, 2019. "Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4576-4596.
    11. de la Cruz, H. & Muñoz, M., 2024. "A conjugate method for simulating the dynamics of stochastic urban spatial network models," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    12. Konstantinos Spiliopoulos & Alexandra Chronopoulou, 2013. "Maximum likelihood estimation for small noise multiscale diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 237-266, October.
    13. Casella, Bruno & Roberts, Gareth O. & Stramer, Osnat, 2011. "Stability of Partially Implicit Langevin Schemes and Their MCMC Variants," MPRA Paper 95220, University Library of Munich, Germany.
    14. Robert Azencott & Peng Ren & Ilya Timofeyev, 2020. "Realised volatility and parametric estimation of Heston SDEs," Finance and Stochastics, Springer, vol. 24(3), pages 723-755, July.
    15. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    16. Jianhai Bao & Feng‐Yu Wang & Chenggui Yuan, 2020. "Ergodicity for neutral type SDEs with infinite length of memory," Mathematische Nachrichten, Wiley Blackwell, vol. 293(9), pages 1675-1690, September.
    17. Holbach, Simon, 2020. "Positive Harris recurrence for degenerate diffusions with internal variables and randomly perturbed time-periodic input," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6965-7003.
    18. Brosse, Nicolas & Durmus, Alain & Moulines, Éric & Sabanis, Sotirios, 2019. "The tamed unadjusted Langevin algorithm," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3638-3663.
    19. Wang, Kai & Fan, Hongjie & Zhu, Yanling, 2025. "Stationary distribution of a stochastic generalized SIRI epidemic model with reinfection and relapse," Statistics & Probability Letters, Elsevier, vol. 216(C).
    20. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:181:y:2025:i:c:s0304414924002667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.