IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v181y2025ics0304414924002667.html

Filtered data based estimators for stochastic processes driven by colored noise

Author

Listed:
  • Pavliotis, Grigorios A.
  • Reich, Sebastian
  • Zanoni, Andrea

Abstract

We consider the problem of estimating unknown parameters in stochastic differential equations driven by colored noise, which we model as a sequence of Gaussian stationary processes with decreasing correlation time. We aim to infer parameters in the limit equation, driven by white noise, given observations of the colored noise dynamics. We consider both the maximum likelihood and the stochastic gradient descent in continuous time estimators, and we propose to modify them by including filtered data. We provide a convergence analysis for our estimators showing their asymptotic unbiasedness in a general setting and asymptotic normality under a simplified scenario.

Suggested Citation

  • Pavliotis, Grigorios A. & Reich, Sebastian & Zanoni, Andrea, 2025. "Filtered data based estimators for stochastic processes driven by colored noise," Stochastic Processes and their Applications, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:spapps:v:181:y:2025:i:c:s0304414924002667
    DOI: 10.1016/j.spa.2024.104558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924002667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sharrock, Louis & Kantas, Nikolas & Parpas, Panos & Pavliotis, Grigorios A., 2023. "Online parameter estimation for the McKean–Vlasov stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 481-546.
    2. Papavasiliou, A. & Pavliotis, G.A. & Stuart, A.M., 2009. "Maximum likelihood drift estimation for multiscale diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3173-3210, October.
    3. Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
    4. Della Maestra, Laetitia & Hoffmann, Marc, 2023. "The LAN property for McKean–Vlasov models in a mean-field regime," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 109-146.
    5. Giuseppe Pesce & Austin McDaniel & Scott Hottovy & Jan Wehr & Giovanni Volpe, 2013. "Stratonovich-to-Itô transition in noisy systems with multiplicative feedback," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    6. Gailus, Siragan & Spiliopoulos, Konstantinos, 2017. "Statistical inference for perturbed multiscale dynamical systems," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 419-448.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lemaire, Vincent, 2007. "An adaptive scheme for the approximation of dissipative systems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1491-1518, October.
    2. Samson, Adeline & Tamborrino, Massimiliano & Tubikanec, Irene, 2025. "Inference for the stochastic FitzHugh-Nagumo model from real action potential data via approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).
    3. Bao, Jianhai & Wang, Jian, 2022. "Coupling approach for exponential ergodicity of stochastic Hamiltonian systems with Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 114-142.
    4. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    5. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    6. Wang, Kai & Fan, Hongjie & Zhu, Yanling, 2025. "Stationary distribution of a stochastic generalized SIRI epidemic model with reinfection and relapse," Statistics & Probability Letters, Elsevier, vol. 216(C).
    7. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    8. Song, Renming & Xie, Longjie, 2020. "Well-posedness and long time behavior of singular Langevin stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1879-1896.
    9. Birrell, Jeremiah & Herzog, David P. & Wehr, Jan, 2012. "The transition from ergodic to explosive behavior in a family of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1519-1539.
    10. Paramahansa Pramanik, 2025. "Construction of an Optimal Strategy: An Analytic Insight Through Path Integral Control Driven by a McKean–Vlasov Opinion Dynamics," Mathematics, MDPI, vol. 13(17), pages 1-43, September.
    11. Amorino, Chiara & Gloter, Arnaud & Halconruy, Hélène, 2025. "Evolving privacy: Drift parameter estimation for discretely observed i.i.d. diffusion processes under LDP," Stochastic Processes and their Applications, Elsevier, vol. 181(C).
    12. Bourguin, S. & Spiliopoulos, K., 2025. "Quantitative fluctuation analysis of multiscale diffusion systems via Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 180(C).
    13. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    14. Boukanjime, Brahim & Maama, Mohamed, 2025. "Stochastic dynamics and probability analysis for a generalized epidemic model with environmental noise," Chaos, Solitons & Fractals, Elsevier, vol. 199(P2).
    15. Qiu Lin & Ruisheng Qi, 2023. "Optimal Weak Order and Approximation of the Invariant Measure with a Fully-Discrete Euler Scheme for Semilinear Stochastic Parabolic Equations with Additive Noise," Mathematics, MDPI, vol. 12(1), pages 1-29, December.
    16. Ganguly, Arnab & Sundar, P., 2021. "Inhomogeneous functionals and approximations of invariant distributions of ergodic diffusions: Central limit theorem and moderate deviation asymptotics," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 74-110.
    17. Gao, Shuaibin & Li, Xiaotong & Liu, Zhuoqi, 2023. "Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    18. Alexander Alecio, 2025. "Noise induced Stability of a Mean-Field model of Systemic Risk with uncertain robustness," Papers 2511.03358, arXiv.org.
    19. Sharrock, Louis & Kantas, Nikolas & Parpas, Panos & Pavliotis, Grigorios A., 2023. "Online parameter estimation for the McKean–Vlasov stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 481-546.
    20. ur Rahman, Ghaus & Badshah, Qaisar & Agarwal, Ravi P. & Islam, Saeed, 2021. "Ergodicity & dynamical aspects of a stochastic childhood disease model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 738-764.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:181:y:2025:i:c:s0304414924002667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.