IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v36y2023i4d10.1007_s10959-023-01285-2.html
   My bibliography  Save this article

Asymptotic Properties of Extremal Markov Processes Driven by Kendall Convolution

Author

Listed:
  • Marek Arendarczyk

    (University of Wrocław)

  • Barbara Jasiulis-Gołdyn

    (University of Wrocław
    University of Liverpool)

  • Edward Omey

    (KU Leuven)

Abstract

This paper is devoted to the analysis of the finite-dimensional distributions and asymptotic behavior of extremal Markov processes connected with the Kendall convolution. In particular, we provide general formulas for the finite dimensional distributions of the random walk driven by the Kendall convolution for a large class of step size distributions. Moreover, we prove limit theorems for random walks and associated continuous-time stochastic processes.

Suggested Citation

  • Marek Arendarczyk & Barbara Jasiulis-Gołdyn & Edward Omey, 2023. "Asymptotic Properties of Extremal Markov Processes Driven by Kendall Convolution," Journal of Theoretical Probability, Springer, vol. 36(4), pages 2040-2065, December.
  • Handle: RePEc:spr:jotpro:v:36:y:2023:i:4:d:10.1007_s10959-023-01285-2
    DOI: 10.1007/s10959-023-01285-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-023-01285-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-023-01285-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. H. Jasiulis-Gołdyn & J. K. Misiewicz, 2011. "On the Uniqueness of the Kendall Generalized Convolution," Journal of Theoretical Probability, Springer, vol. 24(3), pages 746-755, September.
    2. Alpuim, M. T. & Catkan, N. A. & Hüsler, J., 1995. "Extremes and clustering of nonstationary max-AR(1) sequences," Stochastic Processes and their Applications, Elsevier, vol. 56(1), pages 171-184, March.
    3. McNeil, Alexander J. & Neslehová, Johanna, 2010. "From Archimedean to Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1772-1790, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoyle, Edward & Mengütürk, Levent Ali, 2013. "Archimedean survival processes," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 1-15.
    2. Jones, M.C. & Marchand, Éric, 2019. "Multivariate discrete distributions via sums and shares," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 83-93.
    3. Hofert, Marius & Vrins, Frédéric, 2013. "Sibuya copulas," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 318-337.
    4. Włodzimierz Wysocki, 2015. "Kendall's tau and Spearman's rho for n -dimensional Archimedean copulas and their asymptotic properties," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 442-459, December.
    5. Hua, Lei, 2015. "Tail negative dependence and its applications for aggregate loss modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 135-145.
    6. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    7. Paul Janssen & Luc Duchateau, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 271-275, August.
    8. Kühne Robert & Rüschendorf Ludger, 2003. "Optimal stopping and cluster point processes," Statistics & Risk Modeling, De Gruyter, vol. 21(3), pages 261-282, March.
    9. Christian Genest & Johanna Nešlehová & Jean-François Quessy, 2012. "Tests of symmetry for bivariate copulas," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 811-834, August.
    10. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.
    11. Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
    12. Sabrina Mulinacci, 2018. "Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 205-236, March.
    13. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    14. Paul Embrechts & Marius Hofert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 263-270, August.
    15. Kiriliouk, Anna & Lee, Jeongjin & Segers, Johan, 2023. "X-Vine Models for Multivariate Extremes," LIDAM Discussion Papers ISBA 2023038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Belzile, Léo R. & Nešlehová, Johanna G., 2017. "Extremal attractors of Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 68-92.
    17. Siburg, Karl Friedrich & Stehling, Katharina & Stoimenov, Pavel A. & Weiß, Gregor N.F., 2016. "An order of asymmetry in copulas, and implications for risk management," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 241-247.
    18. Hua, Lei & Joe, Harry, 2017. "Multivariate dependence modeling based on comonotonic factors," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 317-333.
    19. Nawaf Mohammed & Edward Furman & Jianxi Su, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of Conditional Tail Expectation," Papers 2102.05003, arXiv.org, revised Aug 2021.
    20. Philippe Lambert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 284-286, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:36:y:2023:i:4:d:10.1007_s10959-023-01285-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.