IDEAS home Printed from https://ideas.repec.org/a/spr/josatr/v7y2022i1d10.1186_s41072-022-00108-7.html
   My bibliography  Save this article

Industrial vehicle routing problem: a case study

Author

Listed:
  • D. G. N. D. Jayarathna

    (Colombo International Nautical and Engineering College)

  • G. H. J. Lanel

    (University of Sri Jayewardenepura)

  • Z. A. M. S. Juman

    (University of Peradeniya)

Abstract

This study is motivated by a real-world application of ABC (Pvt) Ltd., a well-known FMCG (fast-moving consumer goods) industry. The industry have nine agents (in two operating regions) from which it can serve its 5483 clients. We focus on this industry’s outbound logistics in its two operating regions, namely Colombo and Gampaha, while taking into account its distribution and current decentralized redistribution processes, since additional routing costs have been identified in the existing setup. The goal of this study is to implement a better route plan that optimizes the truck allocation system at the lowest possible costs of transportation, warehouse, and administration. First to determine a best location for the new facility, the gravity model is used to pinpoint the exact location of the central warehouse. Then a centralized delivery strategy is applied to establish a better path between the sub-clusters. The performance of this centralized policy is evaluated on a real-world case study data. The relative cost benefit/saving (34%) of the centralized distribution system is then brought into focus and verified with solid statistics by comparing the overall cost of the centralized distribution system to the total cost of the existing decentralized distribution system. Finally, we highlight how decision-makers and policymakers in the logistics area might use our centralized delivery strategy to reduce extra-costs, particularly during the transportation of commodities.

Suggested Citation

  • D. G. N. D. Jayarathna & G. H. J. Lanel & Z. A. M. S. Juman, 2022. "Industrial vehicle routing problem: a case study," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-27, December.
  • Handle: RePEc:spr:josatr:v:7:y:2022:i:1:d:10.1186_s41072-022-00108-7
    DOI: 10.1186/s41072-022-00108-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s41072-022-00108-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s41072-022-00108-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pawel Sitek & Jarosław Wikarek, 2019. "Capacitated vehicle routing problem with pick-up and alternative delivery (CVRPPAD): model and implementation using hybrid approach," Annals of Operations Research, Springer, vol. 273(1), pages 257-277, February.
    2. Marc Goetschalckx, 2011. "Supply Chain Engineering," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6512-7, September.
    3. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    4. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2010. "An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles," European Journal of Operational Research, Elsevier, vol. 202(3), pages 756-763, May.
    5. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    6. Nagy, Gabor & Salhi, Said, 2005. "Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 162(1), pages 126-141, April.
    7. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    8. Mark S. Daskin & Lawrence V. Snyder & Rosemary T. Berger, 2005. "Facility Location in Supply Chain Design," Springer Books, in: André Langevin & Diane Riopel (ed.), Logistics Systems: Design and Optimization, chapter 0, pages 39-65, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Junfang & Dong, Yuanyuan, 2013. "Maximizing profit for vehicle routing under time and weight constraints," International Journal of Production Economics, Elsevier, vol. 145(2), pages 573-583.
    2. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    3. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    4. Zhen, Lu & Baldacci, Roberto & Tan, Zheyi & Wang, Shuaian & Lyu, Junyan, 2022. "Scheduling heterogeneous delivery tasks on a mixed logistics platform," European Journal of Operational Research, Elsevier, vol. 298(2), pages 680-698.
    5. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    6. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    7. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    8. Zhiping Zuo & Yanhui Li & Jing Fu & Jianlin Wu, 2019. "Human Resource Scheduling Model and Algorithm with Time Windows and Multi-Skill Constraints," Mathematics, MDPI, vol. 7(7), pages 1-18, July.
    9. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    10. M. Angélica Salazar-Aguilar & Vincent Boyer & Romeo Sanchez Nigenda & Iris A. Martínez-Salazar, 2019. "The sales force sizing problem with multi-period workload assignments, and service time windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 199-218, March.
    11. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    12. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    13. Neves-Moreira, F. & Amorim, P. & Guimarães, L. & Almada-Lobo, B., 2016. "A long-haul freight transportation problem: Synchronizing resources to deliver requests passing through multiple transshipment locations," European Journal of Operational Research, Elsevier, vol. 248(2), pages 487-506.
    14. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    15. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    16. Letchford, Adam N. & Salazar-González, Juan-José, 2019. "The Capacitated Vehicle Routing Problem: Stronger bounds in pseudo-polynomial time," European Journal of Operational Research, Elsevier, vol. 272(1), pages 24-31.
    17. Erkan Köse & Ahsen Korkmazer & Danışment Vural & Gökçe Gül Gökceoğlu & Pınar Şavlı, 2023. "Simultaneous pickup and delivery model suggestion for personnel transportation in COVID-19 pandemic conditions," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(4), pages 119-131.
    18. Frey, Christian M.M. & Jungwirth, Alexander & Frey, Markus & Kolisch, Rainer, 2023. "The vehicle routing problem with time windows and flexible delivery locations," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1142-1159.
    19. Schyns, M., 2015. "An ant colony system for responsive dynamic vehicle routing," European Journal of Operational Research, Elsevier, vol. 245(3), pages 704-718.
    20. John F. Wellington & Stephen A. Lewis, 2021. "Getting Beyond the First Result of Solving a Vehicle Routing Problem," INFORMS Transactions on Education, INFORMS, vol. 22(1), pages 9-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:josatr:v:7:y:2022:i:1:d:10.1186_s41072-022-00108-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.