IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i1d10.1007_s10957-025-02691-8.html
   My bibliography  Save this article

Adaptive Generalized Conditional Gradient Method for Multiobjective Optimization

Author

Listed:
  • Anteneh Getachew Gebrie

    (Perimeter Institute for Theoretical Physics
    Kyoto University)

  • Ellen Hidemi Fukuda

    (Kyoto University)

Abstract

In this paper, we propose a generalized conditional gradient method for multiobjective optimization, where the objective function is the sum of a smooth function and a possibly nonsmooth function. The proposed method is an improved extension of the classical Frank-Wolfe method of single-objective optimization to the multiobjective optimization problem. The method combines the so-called normalized descent direction as an adaptive procedure and the line search technique. We prove the convergence of the algorithm with respect to Pareto optimality under mild assumptions. The iteration complexity for obtaining an approximate Pareto critical point and the convergence rate in terms of a merit function is also analyzed. Finally, we report some numerical results, which demonstrate the feasibility and competitiveness of the proposed method.

Suggested Citation

  • Anteneh Getachew Gebrie & Ellen Hidemi Fukuda, 2025. "Adaptive Generalized Conditional Gradient Method for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 206(1), pages 1-27, July.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:1:d:10.1007_s10957-025-02691-8
    DOI: 10.1007/s10957-025-02691-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02691-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02691-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Proximal gradient methods for multiobjective optimization and their applications," Computational Optimization and Applications, Springer, vol. 72(2), pages 339-361, March.
    2. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2023. "An accelerated proximal gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 86(2), pages 421-455, November.
    3. G. Cocchi & G. Liuzzi & S. Lucidi & M. Sciandrone, 2020. "On the convergence of steepest descent methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 1-27, September.
    4. Z. R. Gabidullina, 2019. "Adaptive Conditional Gradient Method," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1077-1098, December.
    5. G. Cocchi & G. Liuzzi & A. Papini & M. Sciandrone, 2018. "An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints," Computational Optimization and Applications, Springer, vol. 69(2), pages 267-296, March.
    6. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    7. Madani Bezoui & Mustapha Moulaï & Ahcène Bounceur & Reinhardt Euler, 2019. "An iterative method for solving a bi-objective constrained portfolio optimization problem," Computational Optimization and Applications, Springer, vol. 72(2), pages 479-498, March.
    8. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    9. Mustapha El Moudden & Ahmed El Ghali, 2018. "A new reduced gradient method for solving linearly constrained multiobjective optimization problems," Computational Optimization and Applications, Springer, vol. 71(3), pages 719-741, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Douglas S. Gonçalves & Max L. N. Gonçalves & Jefferson G. Melo, 2024. "An away-step Frank–Wolfe algorithm for constrained multiobjective optimization," Computational Optimization and Applications, Springer, vol. 88(3), pages 759-781, July.
    2. Matteo Lapucci & Pierluigi Mansueto, 2024. "Cardinality-Constrained Multi-objective Optimization: Novel Optimality Conditions and Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 323-351, April.
    3. Douglas S. Gonçalves & Max L. N. Gonçalves & Jefferson G. Melo, 2025. "Improved Convergence Rates for the Multiobjective Frank–Wolfe Method," Journal of Optimization Theory and Applications, Springer, vol. 205(2), pages 1-25, May.
    4. Qing-Rui He & Sheng-Jie Li & Bo-Ya Zhang & Chun-Rong Chen, 2024. "A family of conjugate gradient methods with guaranteed positiveness and descent for vector optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 805-842, December.
    5. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    6. Matteo Lapucci & Pierluigi Mansueto, 2023. "A limited memory Quasi-Newton approach for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 85(1), pages 33-73, May.
    7. Chen, Kangming & Fukuda, Ellen Hidemi & Sato, Hiroyuki, 2025. "Nonlinear conjugate gradient method for vector optimization on Riemannian manifolds with retraction and vector transport," Applied Mathematics and Computation, Elsevier, vol. 486(C).
    8. P. Kesarwani & P. K. Shukla & J. Dutta & K. Deb, 2022. "Approximations for Pareto and Proper Pareto solutions and their KKT conditions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 123-148, August.
    9. Xiaopeng Zhao & Ravi Raushan & Debdas Ghosh & Jen-Chih Yao & Min Qi, 2025. "Proximal gradient method for convex multiobjective optimization problems without Lipschitz continuous gradients," Computational Optimization and Applications, Springer, vol. 91(1), pages 27-66, May.
    10. Shahabeddin Najafi & Masoud Hajarian, 2024. "Multiobjective BFGS method for optimization on Riemannian manifolds," Computational Optimization and Applications, Springer, vol. 87(2), pages 337-354, March.
    11. Valentina Morandi, 2024. "Bridging the user equilibrium and the system optimum in static traffic assignment: a review," 4OR, Springer, vol. 22(1), pages 89-119, March.
    12. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    13. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    14. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    15. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    16. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    17. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    18. Friesz, Terry L. & Tourreilles, Francisco A. & Han, Anthony Fu-Wha, 1979. "Multi-Criteria Optimization Methods in Transport Project Evaluation: The Case of Rural Roads in Developing Countries," Transportation Research Forum Proceedings 1970s 318817, Transportation Research Forum.
    19. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    20. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2019. "Mass Customization and “Forecasting Options’ Penetration Rates Problem”," Operations Research, INFORMS, vol. 67(4), pages 1120-1134, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:1:d:10.1007_s10957-025-02691-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.