IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v201y2024i1d10.1007_s10957-024-02397-3.html
   My bibliography  Save this article

Cardinality-Constrained Multi-objective Optimization: Novel Optimality Conditions and Algorithms

Author

Listed:
  • Matteo Lapucci

    (University of Florence)

  • Pierluigi Mansueto

    (University of Florence)

Abstract

In this paper, we consider multi-objective optimization problems with a sparsity constraint on the vector of variables. For this class of problems, inspired by the homonymous necessary optimality condition for sparse single-objective optimization, we define the concept of L-stationarity and we analyze its relationships with other existing conditions and Pareto optimality concepts. We then propose two novel algorithmic approaches: the first one is an iterative hard thresholding method aiming to find a single L-stationary solution, while the second one is a two-stage algorithm designed to construct an approximation of the whole Pareto front. Both methods are characterized by theoretical properties of convergence to points satisfying necessary conditions for Pareto optimality. Moreover, we report numerical results establishing the practical effectiveness of the proposed methodologies.

Suggested Citation

  • Matteo Lapucci & Pierluigi Mansueto, 2024. "Cardinality-Constrained Multi-objective Optimization: Novel Optimality Conditions and Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 323-351, April.
  • Handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-024-02397-3
    DOI: 10.1007/s10957-024-02397-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02397-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02397-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Kanzow & Matteo Lapucci, 2023. "Inexact penalty decomposition methods for optimization problems with geometric constraints," Computational Optimization and Applications, Springer, vol. 85(3), pages 937-971, July.
    2. Enrico Civitelli & Matteo Lapucci & Fabio Schoen & Alessio Sortino, 2021. "An effective procedure for feature subset selection in logistic regression based on information criteria," Computational Optimization and Applications, Springer, vol. 80(1), pages 1-32, September.
    3. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Proximal gradient methods for multiobjective optimization and their applications," Computational Optimization and Applications, Springer, vol. 72(2), pages 339-361, March.
    4. Amir Beck & Nadav Hallak, 2016. "On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions, and Algorithms," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 196-223, February.
    5. Matteo Lapucci & Pierluigi Mansueto, 2023. "A limited memory Quasi-Newton approach for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 85(1), pages 33-73, May.
    6. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    7. G. Cocchi & G. Liuzzi & S. Lucidi & M. Sciandrone, 2020. "On the convergence of steepest descent methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 1-27, September.
    8. G. Cocchi & G. Liuzzi & A. Papini & M. Sciandrone, 2018. "An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints," Computational Optimization and Applications, Springer, vol. 69(2), pages 267-296, March.
    9. E. Carrizosa & J. B. G. Frenk, 1998. "Dominating Sets for Convex Functions with Some Applications," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 281-295, February.
    10. E. F. Campana & M. Diez & G. Liuzzi & S. Lucidi & R. Pellegrini & V. Piccialli & F. Rinaldi & A. Serani, 2018. "A multi-objective DIRECT algorithm for ship hull optimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 53-72, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Lapucci & Pierluigi Mansueto, 2023. "A limited memory Quasi-Newton approach for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 85(1), pages 33-73, May.
    2. G. A. Carrizo & N. S. Fazzio & M. D. Sánchez & M. L. Schuverdt, 2024. "Scaled-PAKKT sequential optimality condition for multiobjective problems and its application to an Augmented Lagrangian method," Computational Optimization and Applications, Springer, vol. 89(3), pages 769-803, December.
    3. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    4. Andrea Cristofari & Marianna Santis & Stefano Lucidi, 2024. "On Necessary Optimality Conditions for Sets of Points in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 126-145, October.
    5. Shahabeddin Najafi & Masoud Hajarian, 2024. "Multiobjective BFGS method for optimization on Riemannian manifolds," Computational Optimization and Applications, Springer, vol. 87(2), pages 337-354, March.
    6. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
    7. Douglas S. Gonçalves & Max L. N. Gonçalves & Jefferson G. Melo, 2024. "An away-step Frank–Wolfe algorithm for constrained multiobjective optimization," Computational Optimization and Applications, Springer, vol. 88(3), pages 759-781, July.
    8. Filipe Alves & Lino A. Costa & Ana Maria A. C. Rocha & Ana I. Pereira & Paulo Leitão, 2022. "The Sustainable Home Health Care Process Based on Multi-Criteria Decision-Support," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
    9. P. Kesarwani & P. K. Shukla & J. Dutta & K. Deb, 2022. "Approximations for Pareto and Proper Pareto solutions and their KKT conditions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 123-148, August.
    10. Qing-Rui He & Sheng-Jie Li & Bo-Ya Zhang & Chun-Rong Chen, 2024. "A family of conjugate gradient methods with guaranteed positiveness and descent for vector optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 805-842, December.
    11. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    12. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    13. Wenxing Zhu & Huating Huang & Lanfan Jiang & Jianli Chen, 0. "Weighted thresholding homotopy method for sparsity constrained optimization," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-29.
    14. Jean Bigeon & Sébastien Le Digabel & Ludovic Salomon, 2021. "DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 301-338, June.
    15. Amir Beck & Yakov Vaisbourd, 2016. "The Sparse Principal Component Analysis Problem: Optimality Conditions and Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 119-143, July.
    16. Xiaopeng Zhao & Debdas Ghosh & Xiaolong Qin & Christiane Tammer & Jen-Chih Yao, 2025. "On the convergence analysis of a proximal gradient method for multiobjective optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 102-132, April.
    17. Gabriele Eichfelder & Kathrin Klamroth & Julia Niebling, 2021. "Nonconvex constrained optimization by a filtering branch and bound," Journal of Global Optimization, Springer, vol. 80(1), pages 31-61, May.
    18. Ellen Fukuda & L. Graña Drummond, 2013. "Inexact projected gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 473-493, April.
    19. Tianxiang Liu & Ting Kei Pong & Akiko Takeda, 2023. "Doubly majorized algorithm for sparsity-inducing optimization problems with regularizer-compatible constraints," Computational Optimization and Applications, Springer, vol. 86(2), pages 521-553, November.
    20. Alfredo N. Iusem & Jefferson G. Melo & Ray G. Serra, 2021. "A Strongly Convergent Proximal Point Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 183-200, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-024-02397-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.