IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v85y2023i3d10.1007_s10589-023-00475-2.html
   My bibliography  Save this article

Inexact penalty decomposition methods for optimization problems with geometric constraints

Author

Listed:
  • Christian Kanzow

    (University of Würzburg)

  • Matteo Lapucci

    (University of Florence)

Abstract

This paper provides a theoretical and numerical investigation of a penalty decomposition scheme for the solution of optimization problems with geometric constraints. In particular, we consider some situations where parts of the constraints are nonconvex and complicated, like cardinality constraints, disjunctive programs, or matrix problems involving rank constraints. By a variable duplication and decomposition strategy, the method presented here explicitly handles these difficult constraints, thus generating iterates which are feasible with respect to them, while the remaining (standard and supposingly simple) constraints are tackled by sequential penalization. Inexact optimization steps are proven sufficient for the resulting algorithm to work, so that it is employable even with difficult objective functions. The current work is therefore a significant generalization of existing papers on penalty decomposition methods. On the other hand, it is related to some recent publications which use an augmented Lagrangian idea to solve optimization problems with geometric constraints. Compared to these methods, the decomposition idea is shown to be numerically superior since it allows much more freedom in the choice of the subproblem solver, and since the number of certain (possibly expensive) projection steps is significantly less. Extensive numerical results on several highly complicated classes of optimization problems in vector and matrix spaces indicate that the current method is indeed very efficient to solve these problems.

Suggested Citation

  • Christian Kanzow & Matteo Lapucci, 2023. "Inexact penalty decomposition methods for optimization problems with geometric constraints," Computational Optimization and Applications, Springer, vol. 85(3), pages 937-971, July.
  • Handle: RePEc:spr:coopap:v:85:y:2023:i:3:d:10.1007_s10589-023-00475-2
    DOI: 10.1007/s10589-023-00475-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00475-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00475-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matteo Lapucci & Tommaso Levato & Marco Sciandrone, 2021. "Convergent Inexact Penalty Decomposition Methods for Cardinality-Constrained Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 473-496, February.
    2. S. Lämmel & V. Shikhman, 2022. "On nondegenerate M-stationary points for sparsity constrained nonlinear optimization," Journal of Global Optimization, Springer, vol. 82(2), pages 219-242, February.
    3. Roberto Andreani & José Mario Martínez & Alberto Ramos & Paulo J. S. Silva, 2018. "Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 693-717, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
    2. Matteo Lapucci & Pierluigi Mansueto, 2024. "Cardinality-Constrained Multi-objective Optimization: Novel Optimality Conditions and Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 323-351, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
    2. Letícia Becher & Damián Fernández & Alberto Ramos, 2023. "A trust-region LP-Newton method for constrained nonsmooth equations under Hölder metric subregularity," Computational Optimization and Applications, Springer, vol. 86(2), pages 711-743, November.
    3. Renan W. Prado & Sandra A. Santos & Lucas E. A. Simões, 2023. "On the Fulfillment of the Complementary Approximate Karush–Kuhn–Tucker Conditions and Algorithmic Applications," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 705-736, May.
    4. G. A. Carrizo & N. S. Fazzio & M. D. Sánchez & M. L. Schuverdt, 2024. "Scaled-PAKKT sequential optimality condition for multiobjective problems and its application to an Augmented Lagrangian method," Computational Optimization and Applications, Springer, vol. 89(3), pages 769-803, December.
    5. R. Andreani & E. H. Fukuda & G. Haeser & D. O. Santos & L. D. Secchin, 2021. "On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 79(3), pages 633-648, July.
    6. Ademir A. Ribeiro & Mael Sachine & Evelin H. M. Krulikovski, 2022. "A Comparative Study of Sequential Optimality Conditions for Mathematical Programs with Cardinality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 1067-1083, March.
    7. Gabriel Haeser & Alberto Ramos, 2020. "Constraint Qualifications for Karush–Kuhn–Tucker Conditions in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 469-487, November.
    8. Matteo Lapucci & Tommaso Levato & Francesco Rinaldi & Marco Sciandrone, 2023. "A Unifying Framework for Sparsity-Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 199(2), pages 663-692, November.
    9. Juliano B. Francisco & Douglas S. Gonçalves & Fermín S. V. Bazán & Lila L. T. Paredes, 2020. "Non-monotone inexact restoration method for nonlinear programming," Computational Optimization and Applications, Springer, vol. 76(3), pages 867-888, July.
    10. Gabriel Haeser, 2018. "A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms," Computational Optimization and Applications, Springer, vol. 70(2), pages 615-639, June.
    11. Christian Kanzow & Andreas B. Raharja & Alexandra Schwartz, 2021. "Sequential optimality conditions for cardinality-constrained optimization problems with applications," Computational Optimization and Applications, Springer, vol. 80(1), pages 185-211, September.
    12. L. F. Bueno & G. Haeser & F. Lara & F. N. Rojas, 2020. "An Augmented Lagrangian method for quasi-equilibrium problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 737-766, July.
    13. Roberto Andreani & Ellen H. Fukuda & Gabriel Haeser & Daiana O. Santos & Leonardo D. Secchin, 2024. "Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 1-33, January.
    14. Van-Bong Nguyen & Thi Ngan Nguyen & Ruey-Lin Sheu, 2020. "Strong duality in minimizing a quadratic form subject to two homogeneous quadratic inequalities over the unit sphere," Journal of Global Optimization, Springer, vol. 76(1), pages 121-135, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:85:y:2023:i:3:d:10.1007_s10589-023-00475-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.