IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v199y2023i2d10.1007_s10957-023-02306-0.html
   My bibliography  Save this article

A Unifying Framework for Sparsity-Constrained Optimization

Author

Listed:
  • Matteo Lapucci

    (Università di Firenze)

  • Tommaso Levato

    (Università di Firenze)

  • Francesco Rinaldi

    (Università di Padova)

  • Marco Sciandrone

    (Sapienza Università di Roma)

Abstract

In this paper, we consider the optimization problem of minimizing a continuously differentiable function subject to both convex constraints and sparsity constraints. By exploiting a mixed-integer reformulation from the literature, we define a necessary optimality condition based on a tailored neighborhood that allows to take into account potential changes of the support set. We then propose an algorithmic framework to tackle the considered class of problems and prove its convergence to points satisfying the newly introduced concept of stationarity. We further show that, by suitably choosing the neighborhood, other well-known optimality conditions from the literature can be recovered at the limit points of the sequence produced by the algorithm. Finally, we analyze the computational impact of the neighborhood size within our framework and in the comparison with some state-of-the-art algorithms, namely, the Penalty Decomposition method and the Greedy Sparse-Simplex method. The algorithms have been tested using a benchmark related to sparse logistic regression problems.

Suggested Citation

  • Matteo Lapucci & Tommaso Levato & Francesco Rinaldi & Marco Sciandrone, 2023. "A Unifying Framework for Sparsity-Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 199(2), pages 663-692, November.
  • Handle: RePEc:spr:joptap:v:199:y:2023:i:2:d:10.1007_s10957-023-02306-0
    DOI: 10.1007/s10957-023-02306-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02306-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02306-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Romy Shioda, 2009. "Algorithm for cardinality-constrained quadratic optimization," Computational Optimization and Applications, Springer, vol. 43(1), pages 1-22, May.
    2. Amir Beck & Nadav Hallak, 2016. "On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions, and Algorithms," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 196-223, February.
    3. Duan Li & Xiaoling Sun, 2006. "Nonlinear Integer Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-32995-6, June.
    4. Matteo Lapucci & Tommaso Levato & Marco Sciandrone, 2021. "Convergent Inexact Penalty Decomposition Methods for Cardinality-Constrained Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 473-496, February.
    5. Max Bucher & Alexandra Schwartz, 2018. "Second-Order Optimality Conditions and Improved Convergence Results for Regularization Methods for Cardinality-Constrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 383-410, August.
    6. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan-Chao Liang & Gui-Hua Lin, 2024. "Relaxed method for optimization problems with cardinality constraints," Journal of Global Optimization, Springer, vol. 88(2), pages 359-375, February.
    2. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    3. Justin A. Sirignano & Gerry Tsoukalas & Kay Giesecke, 2016. "Large-Scale Loan Portfolio Selection," Operations Research, INFORMS, vol. 64(6), pages 1239-1255, December.
    4. Ademir A. Ribeiro & Mael Sachine & Evelin H. M. Krulikovski, 2022. "A Comparative Study of Sequential Optimality Conditions for Mathematical Programs with Cardinality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 1067-1083, March.
    5. S. Lämmel & V. Shikhman, 2022. "On nondegenerate M-stationary points for sparsity constrained nonlinear optimization," Journal of Global Optimization, Springer, vol. 82(2), pages 219-242, February.
    6. Christian Kanzow & Andreas B. Raharja & Alexandra Schwartz, 2021. "Sequential optimality conditions for cardinality-constrained optimization problems with applications," Computational Optimization and Applications, Springer, vol. 80(1), pages 185-211, September.
    7. Max Bucher & Alexandra Schwartz, 2018. "Second-Order Optimality Conditions and Improved Convergence Results for Regularization Methods for Cardinality-Constrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 383-410, August.
    8. Christian Kanzow & Andreas B. Raharja & Alexandra Schwartz, 2021. "An Augmented Lagrangian Method for Cardinality-Constrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 793-813, June.
    9. Jianjun Gao & Duan Li, 2013. "Optimal Cardinality Constrained Portfolio Selection," Operations Research, INFORMS, vol. 61(3), pages 745-761, June.
    10. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
    11. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    12. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    13. Cascón, J.M. & González-Arteaga, T. & de Andrés Calle, R., 2019. "Reaching social consensus family budgets: The Spanish case," Omega, Elsevier, vol. 86(C), pages 28-41.
    14. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
    15. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    16. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    17. Chunli Liu & Jianjun Gao, 2015. "A polynomial case of convex integer quadratic programming problems with box integer constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 661-674, August.
    18. Zhi-Long Dong & Fengmin Xu & Yu-Hong Dai, 2020. "Fast algorithms for sparse portfolio selection considering industries and investment styles," Journal of Global Optimization, Springer, vol. 78(4), pages 763-789, December.
    19. A. Garcia-Bernabeu & J. V. Salcedo & A. Hilario & D. Pla-Santamaria & Juan M. Herrero, 2019. "Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA," Complexity, Hindawi, vol. 2019, pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:199:y:2023:i:2:d:10.1007_s10957-023-02306-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.