IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v88y2024i3d10.1007_s10589-024-00577-5.html
   My bibliography  Save this article

An away-step Frank–Wolfe algorithm for constrained multiobjective optimization

Author

Listed:
  • Douglas S. Gonçalves

    (Universidade Federal de Santa Catarina)

  • Max L. N. Gonçalves

    (IME, Universidade Federal de Goiás)

  • Jefferson G. Melo

    (IME, Universidade Federal de Goiás)

Abstract

In this paper, we propose and analyze an away-step Frank–Wolfe algorithm designed for solving multiobjective optimization problems over polytopes. We prove that each limit point of the sequence generated by the algorithm is a weak Pareto optimal solution. Furthermore, under additional conditions, we show linear convergence of the whole sequence to a Pareto optimal solution. Numerical examples illustrate a promising performance of the proposed algorithm in problems where the multiobjective Frank–Wolfe convergence rate is only sublinear.

Suggested Citation

  • Douglas S. Gonçalves & Max L. N. Gonçalves & Jefferson G. Melo, 2024. "An away-step Frank–Wolfe algorithm for constrained multiobjective optimization," Computational Optimization and Applications, Springer, vol. 88(3), pages 759-781, July.
  • Handle: RePEc:spr:coopap:v:88:y:2024:i:3:d:10.1007_s10589-024-00577-5
    DOI: 10.1007/s10589-024-00577-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00577-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00577-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Proximal gradient methods for multiobjective optimization and their applications," Computational Optimization and Applications, Springer, vol. 72(2), pages 339-361, March.
    2. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2023. "An accelerated proximal gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 86(2), pages 421-455, November.
    3. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    4. E. Carrizosa & J. B. G. Frenk, 1998. "Dominating Sets for Convex Functions with Some Applications," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 281-295, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing-Rui He & Sheng-Jie Li & Bo-Ya Zhang & Chun-Rong Chen, 2024. "A family of conjugate gradient methods with guaranteed positiveness and descent for vector optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 805-842, December.
    2. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    3. Chen, Kangming & Fukuda, Ellen Hidemi & Sato, Hiroyuki, 2025. "Nonlinear conjugate gradient method for vector optimization on Riemannian manifolds with retraction and vector transport," Applied Mathematics and Computation, Elsevier, vol. 486(C).
    4. Matteo Lapucci & Pierluigi Mansueto, 2024. "Cardinality-Constrained Multi-objective Optimization: Novel Optimality Conditions and Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 323-351, April.
    5. Shahabeddin Najafi & Masoud Hajarian, 2024. "Multiobjective BFGS method for optimization on Riemannian manifolds," Computational Optimization and Applications, Springer, vol. 87(2), pages 337-354, March.
    6. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    7. G. A. Carrizo & N. S. Fazzio & M. D. Sánchez & M. L. Schuverdt, 2024. "Scaled-PAKKT sequential optimality condition for multiobjective problems and its application to an Augmented Lagrangian method," Computational Optimization and Applications, Springer, vol. 89(3), pages 769-803, December.
    8. Ellen Fukuda & L. Graña Drummond, 2013. "Inexact projected gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 473-493, April.
    9. Matteo Lapucci & Pierluigi Mansueto, 2023. "A limited memory Quasi-Newton approach for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 85(1), pages 33-73, May.
    10. Alfredo N. Iusem & Jefferson G. Melo & Ray G. Serra, 2021. "A Strongly Convergent Proximal Point Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 183-200, July.
    11. Qingjie Hu & Ruyun Li & Yanyan Zhang & Zhibin Zhu, 2024. "On the Extension of Dai-Liao Conjugate Gradient Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 810-843, October.
    12. N. Mahdavi-Amiri & F. Salehi Sadaghiani, 2017. "Strictly feasible solutions and strict complementarity in multiple objective linear optimization," 4OR, Springer, vol. 15(3), pages 303-326, September.
    13. Shahabeddin Najafi & Masoud Hajarian, 2023. "Multiobjective Conjugate Gradient Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1229-1248, June.
    14. Filipe Alves & Lino A. Costa & Ana Maria A. C. Rocha & Ana I. Pereira & Paulo Leitão, 2022. "The Sustainable Home Health Care Process Based on Multi-Criteria Decision-Support," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
    15. Ellen H. Fukuda & L. M. Graña Drummond & Fernanda M. P. Raupp, 2016. "An external penalty-type method for multicriteria," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 493-513, July.
    16. Suyun Liu & Luis Nunes Vicente, 2023. "Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 165-186, July.
    17. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2023. "An accelerated proximal gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 86(2), pages 421-455, November.
    18. P. Kesarwani & P. K. Shukla & J. Dutta & K. Deb, 2022. "Approximations for Pareto and Proper Pareto solutions and their KKT conditions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 123-148, August.
    19. L. F. Prudente & D. R. Souza, 2024. "Global convergence of a BFGS-type algorithm for nonconvex multiobjective optimization problems," Computational Optimization and Applications, Springer, vol. 88(3), pages 719-757, July.
    20. Konstantin Sonntag & Sebastian Peitz, 2024. "Fast Multiobjective Gradient Methods with Nesterov Acceleration via Inertial Gradient-Like Systems," Journal of Optimization Theory and Applications, Springer, vol. 201(2), pages 539-582, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:88:y:2024:i:3:d:10.1007_s10589-024-00577-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.