IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v92y2025i1d10.1007_s10589-025-00696-7.html
   My bibliography  Save this article

A Bi-Objective Optimization Based Acquisition Strategy for Batch Bayesian Global Optimization

Author

Listed:
  • Francesco Carciaghi

    (University of Florence)

  • Simone Magistri

    (University of Florence)

  • Pierluigi Mansueto

    (University of Florence)

  • Fabio Schoen

    (University of Florence)

Abstract

In this paper we deal with batch Bayesian Optimization (Bayes-Opt) problems over a box. Bayes-Opt approaches find their main applications when the objective function is very expensive to evaluate. Sometimes, given the availability of multi-processor computing architectures, function evaluation might be performed in parallel in order to lower the clock-time of the overall computation. This paper fits this situation and is devoted to the development of a novel bi-objective optimization (BOO) acquisition strategy to sample batches of points where to evaluate the objective function. The BOO problem involves the Gaussian Process posterior mean and variance functions, which, in most of the acquisition strategies from the literature, are generally used in combination, frequently through scalarization. However, such scalarization could compromise the Bayes-Opt process performance, as getting the desired trade-off between exploration and exploitation is not trivial in most cases. We instead aim to reconstruct the Pareto front of the BOO problem exploiting first order information of the posterior mean and variance, thus generating multiple trade-offs of the two functions without any a priori knowledge. The algorithm used for the reconstruction is the Non-dominated Sorting Memetic Algorithm (NSMA), recently proposed in the literature and proved to be effective in solving hard MOO problems. Finally, we present two clustering approaches, each of them operating on a different space, to select potentially optimal points from the Pareto front. We compare our methodology with well-known acquisition strategies from the literature, showing its effectiveness on a wide set of experiments.

Suggested Citation

  • Francesco Carciaghi & Simone Magistri & Pierluigi Mansueto & Fabio Schoen, 2025. "A Bi-Objective Optimization Based Acquisition Strategy for Batch Bayesian Global Optimization," Computational Optimization and Applications, Springer, vol. 92(1), pages 81-123, September.
  • Handle: RePEc:spr:coopap:v:92:y:2025:i:1:d:10.1007_s10589-025-00696-7
    DOI: 10.1007/s10589-025-00696-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-025-00696-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-025-00696-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhiwei Feng & Qingbin Zhang & Qingfu Zhang & Qiangang Tang & Tao Yang & Yang Ma, 2015. "A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization," Journal of Global Optimization, Springer, vol. 61(4), pages 677-694, April.
    2. Charles Audet & Sébastien Le Digabel & Renaud Saltet, 2022. "Quantifying uncertainty with ensembles of surrogates for blackbox optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 29-66, September.
    3. Roustant, Olivier & Ginsbourger, David & Deville, Yves, 2012. "DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i01).
    4. Charles E. Clark, 1961. "The Greatest of a Finite Set of Random Variables," Operations Research, INFORMS, vol. 9(2), pages 145-162, April.
    5. Jialei Wang & Scott C. Clark & Eric Liu & Peter I. Frazier, 2020. "Parallel Bayesian Global Optimization of Expensive Functions," Operations Research, INFORMS, vol. 68(6), pages 1850-1865, November.
    6. Matteo Lapucci & Pierluigi Mansueto, 2023. "A limited memory Quasi-Newton approach for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 85(1), pages 33-73, May.
    7. G. Cocchi & G. Liuzzi & S. Lucidi & M. Sciandrone, 2020. "On the convergence of steepest descent methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 1-27, September.
    8. Diana M. Negoescu & Peter I. Frazier & Warren B. Powell, 2011. "The Knowledge-Gradient Algorithm for Sequencing Experiments in Drug Discovery," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 346-363, August.
    9. James K. Hartman, 1973. "Some experiments in global optimization," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 20(3), pages 569-576, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Lapucci & Pierluigi Mansueto, 2024. "Cardinality-Constrained Multi-objective Optimization: Novel Optimality Conditions and Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 323-351, April.
    2. Andrea Cristofari & Marianna Santis & Stefano Lucidi, 2024. "On Necessary Optimality Conditions for Sets of Points in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 126-145, October.
    3. Lof, Matthijs & van Bommel, Jos, 2023. "Asymmetric information and the distribution of trading volume," Journal of Corporate Finance, Elsevier, vol. 82(C).
    4. Biewen, Martin & Kugler, Philipp, 2021. "Two-stage least squares random forests with an application to Angrist and Evans (1998)," Economics Letters, Elsevier, vol. 204(C).
    5. Seokhyun Chung & Raed Al Kontar & Zhenke Wu, 2022. "Weakly Supervised Multi-output Regression via Correlated Gaussian Processes," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 115-137, October.
    6. Martinetti, Davide & Geniaux, Ghislain, 2017. "Approximate likelihood estimation of spatial probit models," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 30-45.
    7. Federica Bomboi & Christoph Buchheim & Jonas Pruente, 2022. "On the stochastic vehicle routing problem with time windows, correlated travel times, and time dependency," 4OR, Springer, vol. 20(2), pages 217-239, June.
    8. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Eric Bergerson & Megan Kurka & Ludek Kopacek, 2020. "Learning Demand Curves in B2B Pricing: A New Framework and Case Study," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1287-1306, May.
    9. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    10. Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Balancing global and local search in parallel efficient global optimization algorithms," Journal of Global Optimization, Springer, vol. 67(4), pages 873-892, April.
    11. Denis Bolduc & Mustapha Kaci, 1993. "Estimation des modèles probit polytomiques : un survol des techniques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 69(3), pages 161-191.
    12. Victor Picheny & Mickael Binois & Abderrahmane Habbal, 2019. "A Bayesian optimization approach to find Nash equilibria," Journal of Global Optimization, Springer, vol. 73(1), pages 171-192, January.
    13. Emre Barut & Warren Powell, 2014. "Optimal learning for sequential sampling with non-parametric beliefs," Journal of Global Optimization, Springer, vol. 58(3), pages 517-543, March.
    14. Tasos Nikoleris & Mark Hansen, 2012. "Queueing Models for Trajectory-Based Aircraft Operations," Transportation Science, INFORMS, vol. 46(4), pages 501-511, November.
    15. Torossian, Léonard & Picheny, Victor & Faivre, Robert & Garivier, Aurélien, 2020. "A review on quantile regression for stochastic computer experiments," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    16. Yu Chen & Helong Chen & Zhibin Zhu, 2026. "A Three-Term Conjugate Gradient-Type Method with Sufficient Descent Property for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 208(1), pages 1-42, January.
    17. Kamiński, Bogumił, 2015. "A method for the updating of stochastic kriging metamodels," European Journal of Operational Research, Elsevier, vol. 247(3), pages 859-866.
    18. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    19. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. F. L. Wolf & L. A. Grzelak & G. Deelstra, 2022. "Cheapest-to-deliver collateral: a common factor approach," Quantitative Finance, Taylor & Francis Journals, vol. 22(4), pages 707-723, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:92:y:2025:i:1:d:10.1007_s10589-025-00696-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.