IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i1d10.1007_s10957-025-02682-9.html
   My bibliography  Save this article

Gauss–Southwell Type Descent Methods for Low-Rank Matrix Optimization

Author

Listed:
  • Guillaume Olikier

    (Université Côte d’Azur and Inria)

  • André Uschmajew

    (University of Augsburg)

  • Bart Vandereycken

    (University of Geneva)

Abstract

We consider gradient-related methods for low-rank matrix optimization with a smooth cost function. The methods operate on single factors of the low-rank factorization and share aspects of both alternating and Riemannian optimization. Two possible choices for the search directions based on Gauss–Southwell type selection rules are compared: one using the gradient of a factorized non-convex formulation, the other using the Riemannian gradient. While both methods provide gradient convergence guarantees that are similar to the unconstrained case, numerical experiments on a quadratic cost function indicate that the version based on the Riemannian gradient is significantly more robust with respect to small singular values and the condition number of the cost function. As a side result of our approach, we also obtain new convergence results for the alternating least squares method.

Suggested Citation

  • Guillaume Olikier & André Uschmajew & Bart Vandereycken, 2025. "Gauss–Southwell Type Descent Methods for Low-Rank Matrix Optimization," Journal of Optimization Theory and Applications, Springer, vol. 206(1), pages 1-32, July.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:1:d:10.1007_s10957-025-02682-9
    DOI: 10.1007/s10957-025-02682-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02682-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02682-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuetian Luo & Xudong Li & Anru R. Zhang, 2024. "On Geometric Connections of Embedded and Quotient Geometries in Riemannian Fixed-Rank Matrix Optimization," Mathematics of Operations Research, INFORMS, vol. 49(2), pages 782-825, May.
    2. Yurii Nesterov, 2018. "Lectures on Convex Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-91578-4, April.
    3. NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Ghaffari-Hadigheh & L. Sinjorgo & R. Sotirov, 2024. "On convergence of a q-random coordinate constrained algorithm for non-convex problems," Journal of Global Optimization, Springer, vol. 90(4), pages 843-868, December.
    2. Aleksandr Lobanov & Nail Bashirov & Alexander Gasnikov, 2024. "The “Black-Box” Optimization Problem: Zero-Order Accelerated Stochastic Method via Kernel Approximation," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2451-2486, December.
    3. Anastasiya Ivanova & Pavel Dvurechensky & Evgeniya Vorontsova & Dmitry Pasechnyuk & Alexander Gasnikov & Darina Dvinskikh & Alexander Tyurin, 2022. "Oracle Complexity Separation in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 462-490, June.
    4. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    5. Fu, Hao & Lam, William H.K. & Ma, Wei & Shi, Yuxin & Jiang, Rui & Sun, Huijun & Gao, Ziyou, 2025. "Modeling the residual queue and queue-dependent capacity in a static traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    6. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    7. Felipe Lara & Raúl T. Marcavillaca & Phan Tu Vuong, 2025. "Characterizations, Dynamical Systems and Gradient Methods for Strongly Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 206(3), pages 1-25, September.
    8. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Lebeau, Alexis & Petitet, Marie & Quemin, Simon & Saguan, Marcelo, 2024. "Long-term issues with the Energy-Only Market design in the context of deep decarbonization," Energy Economics, Elsevier, vol. 132(C).
    10. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    11. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    12. Xin Yang & Lingling Xu, 2023. "Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems," Journal of Global Optimization, Springer, vol. 87(2), pages 939-964, November.
    13. Egor Gladin & Alexander Gasnikov & Pavel Dvurechensky, 2025. "Accuracy Certificates for Convex Minimization with Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-23, January.
    14. Pavel Shcherbakov & Mingyue Ding & Ming Yuchi, 2021. "Random Sampling Many-Dimensional Sets Arising in Control," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
    15. Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
    16. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    17. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    18. Ion Necoara & Yurii Nesterov & François Glineur, 2017. "Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 227-254, April.
    19. Sjur Didrik Flåm, 2020. "Emergence of price-taking Behavior," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(3), pages 847-870, October.
    20. Jean-Jacques Forneron, 2023. "Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models," Papers 2301.07196, arXiv.org, revised Feb 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:1:d:10.1007_s10957-025-02682-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.