IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i3d10.1007_s10957-025-02728-y.html
   My bibliography  Save this article

Characterizations, Dynamical Systems and Gradient Methods for Strongly Quasiconvex Functions

Author

Listed:
  • Felipe Lara

    (Universidad de Tarapacá)

  • Raúl T. Marcavillaca

    (Universidad de Chile)

  • Phan Tu Vuong

    (University of Southampton
    HCMC University of Technology and Education)

Abstract

We study differentiable strongly quasiconvex functions for providing new properties for algorithmic and monotonicity purposes. Furthermore, we provide insights into the decreasing behaviour of strongly quasiconvex functions, applying this for establishing exponential convergence for first- and second-order gradient systems without relying on the usual Lipschitz continuity assumption on the gradient of the function. The explicit discretization of the first-order dynamical system leads to the gradient descent method while discretization of the second-order dynamical system with viscous damping recovers the heavy ball method. We establish the linear convergence of both methods under suitable conditions on the parameters as well as numerical experiments for supporting our theoretical findings.

Suggested Citation

  • Felipe Lara & Raúl T. Marcavillaca & Phan Tu Vuong, 2025. "Characterizations, Dynamical Systems and Gradient Methods for Strongly Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 206(3), pages 1-25, September.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:3:d:10.1007_s10957-025-02728-y
    DOI: 10.1007/s10957-025-02728-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02728-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02728-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:3:d:10.1007_s10957-025-02728-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.