IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i3d10.1007_s10957-025-02728-y.html
   My bibliography  Save this article

Characterizations, Dynamical Systems and Gradient Methods for Strongly Quasiconvex Functions

Author

Listed:
  • Felipe Lara

    (Universidad de Tarapacá)

  • Raúl T. Marcavillaca

    (Universidad de Chile)

  • Phan Tu Vuong

    (University of Southampton
    HCMC University of Technology and Education)

Abstract

We study differentiable strongly quasiconvex functions for providing new properties for algorithmic and monotonicity purposes. Furthermore, we provide insights into the decreasing behaviour of strongly quasiconvex functions, applying this for establishing exponential convergence for first- and second-order gradient systems without relying on the usual Lipschitz continuity assumption on the gradient of the function. The explicit discretization of the first-order dynamical system leads to the gradient descent method while discretization of the second-order dynamical system with viscous damping recovers the heavy ball method. We establish the linear convergence of both methods under suitable conditions on the parameters as well as numerical experiments for supporting our theoretical findings.

Suggested Citation

  • Felipe Lara & Raúl T. Marcavillaca & Phan Tu Vuong, 2025. "Characterizations, Dynamical Systems and Gradient Methods for Strongly Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 206(3), pages 1-25, September.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:3:d:10.1007_s10957-025-02728-y
    DOI: 10.1007/s10957-025-02728-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02728-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02728-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsen Rahimi Piranfar & Hadi Khatibzadeh, 2021. "Long-Time Behavior of a Gradient System Governed by a Quasiconvex Function," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 169-191, January.
    2. F. Lara, 2022. "On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 891-911, March.
    3. Yurii Nesterov, 2018. "Lectures on Convex Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-91578-4, April.
    4. Ion Necoara & Yurii Nesterov & François Glineur, 2019. "Linear convergence of first order methods for non-strongly convex optimization," LIDAM Reprints CORE 3000, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. A. Kabgani & F. Lara, 2022. "Strong subdifferentials: theory and applications in nonconvex optimization," Journal of Global Optimization, Springer, vol. 84(2), pages 349-368, October.
    6. J. Bolte, 2003. "Continuous Gradient Projection Method in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 235-259, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorin-Mihai Grad & Felipe Lara & Raúl T. Marcavillaca, 2025. "Strongly Quasiconvex Functions: What We Know (So Far)," Journal of Optimization Theory and Applications, Springer, vol. 205(2), pages 1-41, May.
    2. Balendu Bhooshan Upadhyay & Subham Poddar & Jen-Chih Yao & Xiaopeng Zhao, 2025. "Inexact proximal point method with a Bregman regularization for quasiconvex multiobjective optimization problems via limiting subdifferentials," Annals of Operations Research, Springer, vol. 345(1), pages 417-466, February.
    3. Alfredo Iusem & Felipe Lara & Raúl T. Marcavillaca & Le Hai Yen, 2024. "A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming," Journal of Global Optimization, Springer, vol. 90(3), pages 755-779, November.
    4. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    5. A. Scagliotti & P. Colli Franzone, 2022. "A piecewise conservative method for unconstrained convex optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 251-288, January.
    6. Zamani, Moslem & Abbaszadehpeivasti, Hadi & de Klerk, Etienne, 2024. "The exact worst-case convergence rate of the alternating direction method of multipliers," Other publications TiSEM f30ae9e6-ed19-423f-bd1e-0, Tilburg University, School of Economics and Management.
    7. Fu, Hao & Lam, William H.K. & Ma, Wei & Shi, Yuxin & Jiang, Rui & Sun, Huijun & Gao, Ziyou, 2025. "Modeling the residual queue and queue-dependent capacity in a static traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    8. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    9. Yassine Nabou & Ion Necoara, 2024. "Efficiency of higher-order algorithms for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 87(2), pages 441-473, March.
    10. S.-M. Grad & L. D. Muu & T. V. Thang, 2025. "Proximal-Type Algorithms for Solving Nonconvex Mixed Multivalued Quasi-Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 206(2), pages 1-26, August.
    11. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    12. Xin Yang & Lingling Xu, 2023. "Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems," Journal of Global Optimization, Springer, vol. 87(2), pages 939-964, November.
    13. Sorin-Mihai Grad & Felipe Lara & Raúl Tintaya Marcavillaca, 2024. "Relaxed-Inertial Proximal Point Algorithms for Nonconvex Equilibrium Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2233-2262, December.
    14. Egor Gladin & Alexander Gasnikov & Pavel Dvurechensky, 2025. "Accuracy Certificates for Convex Minimization with Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-23, January.
    15. Francisco García Riesgo & Sergio Luis Suárez Gómez & Enrique Díez Alonso & Carlos González-Gutiérrez & Jesús Daniel Santos, 2021. "Fully Convolutional Approaches for Numerical Approximation of Turbulent Phases in Solar Adaptive Optics," Mathematics, MDPI, vol. 9(14), pages 1-20, July.
    16. Pavel Shcherbakov & Mingyue Ding & Ming Yuchi, 2021. "Random Sampling Many-Dimensional Sets Arising in Control," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
    17. Vassilis Apidopoulos & Nicolò Ginatta & Silvia Villa, 2022. "Convergence rates for the heavy-ball continuous dynamics for non-convex optimization, under Polyak–Łojasiewicz condition," Journal of Global Optimization, Springer, vol. 84(3), pages 563-589, November.
    18. Liam Madden & Stephen Becker & Emiliano Dall’Anese, 2021. "Bounds for the Tracking Error of First-Order Online Optimization Methods," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 437-457, May.
    19. Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
    20. Juan José Maulén & Juan Peypouquet, 2023. "A Speed Restart Scheme for a Dynamics with Hessian-Driven Damping," Journal of Optimization Theory and Applications, Springer, vol. 199(2), pages 831-855, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:3:d:10.1007_s10957-025-02728-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.