IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v204y2025i1d10.1007_s10957-024-02599-9.html
   My bibliography  Save this article

Accuracy Certificates for Convex Minimization with Inexact Oracle

Author

Listed:
  • Egor Gladin

    (HSE University
    Humboldt-Universität zu Berlin)

  • Alexander Gasnikov

    (Innopolis University
    Moscow Institute of Physics and Technology
    Institute for System Programming RAS)

  • Pavel Dvurechensky

    (Weierstrass Institute for Applied Analysis and Stochastics)

Abstract

Accuracy certificates for convex minimization problems allow for online verification of the accuracy of approximate solutions and provide a theoretically valid online stopping criterion. When solving the Lagrange dual problem, accuracy certificates produce a simple way to recover an approximate primal solution and estimate its accuracy. In this paper, we generalize accuracy certificates for the setting of an inexact first-order oracle, including the setting of primal and Lagrange dual pair of problems. We further propose an explicit way to construct accuracy certificates for a large class of cutting plane methods based on polytopes. As a by-product, we show that the considered cutting plane methods can be efficiently used with a noisy oracle even though they were originally designed to be equipped with an exact oracle. Finally, we illustrate the work of the proposed certificates in the numerical experiments highlighting that our certificates provide a tight upper bound on the objective residual.

Suggested Citation

  • Egor Gladin & Alexander Gasnikov & Pavel Dvurechensky, 2025. "Accuracy Certificates for Convex Minimization with Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-23, January.
  • Handle: RePEc:spr:joptap:v:204:y:2025:i:1:d:10.1007_s10957-024-02599-9
    DOI: 10.1007/s10957-024-02599-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02599-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02599-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yurii Nesterov, 2018. "Lectures on Convex Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-91578-4, October.
    2. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2012. "Double smoothing technique for large-scale linearly constrained convex optimization," LIDAM Reprints CORE 2423, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Kurt M. Anstreicher, 1997. "On Vaidya's Volumetric Cutting Plane Method for Convex Programming," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 63-89, February.
    4. Arkadi Nemirovski & Shmuel Onn & Uriel G. Rothblum, 2010. "Accuracy Certificates for Computational Problems with Convex Structure," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 52-78, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    2. A. Scagliotti & P. Colli Franzone, 2022. "A piecewise conservative method for unconstrained convex optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 251-288, January.
    3. Fu, Hao & Lam, William H.K. & Ma, Wei & Shi, Yuxin & Jiang, Rui & Sun, Huijun & Gao, Ziyou, 2025. "Modeling the residual queue and queue-dependent capacity in a static traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    4. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    5. Felipe Lara & Raúl T. Marcavillaca & Phan Tu Vuong, 2025. "Characterizations, Dynamical Systems and Gradient Methods for Strongly Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 206(3), pages 1-25, September.
    6. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    8. Xin Yang & Lingling Xu, 2023. "Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems," Journal of Global Optimization, Springer, vol. 87(2), pages 939-964, November.
    9. Francisco García Riesgo & Sergio Luis Suárez Gómez & Enrique Díez Alonso & Carlos González-Gutiérrez & Jesús Daniel Santos, 2021. "Fully Convolutional Approaches for Numerical Approximation of Turbulent Phases in Solar Adaptive Optics," Mathematics, MDPI, vol. 9(14), pages 1-20, July.
    10. Pavel Shcherbakov & Mingyue Ding & Ming Yuchi, 2021. "Random Sampling Many-Dimensional Sets Arising in Control," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
    11. Liam Madden & Stephen Becker & Emiliano Dall’Anese, 2021. "Bounds for the Tracking Error of First-Order Online Optimization Methods," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 437-457, May.
    12. Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
    13. Paul R. Rosenbaum, 2023. "Sensitivity analyses informed by tests for bias in observational studies," Biometrics, The International Biometric Society, vol. 79(1), pages 475-487, March.
    14. Xue Gao & Xingju Cai & Deren Han, 2020. "A Gauss–Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 76(4), pages 863-887, April.
    15. Alexander Kononov & Yulia Zakharova, 2022. "Speed scaling scheduling of multiprocessor jobs with energy constraint and makespan criterion," Journal of Global Optimization, Springer, vol. 83(3), pages 539-564, July.
    16. Jean-Jacques Forneron, 2023. "Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models," Papers 2301.07196, arXiv.org, revised Aug 2025.
    17. Azimbek Khudoyberdiev & Shabir Ahmad & Israr Ullah & DoHyeun Kim, 2020. "An Optimization Scheme Based on Fuzzy Logic Control for Efficient Energy Consumption in Hydroponics Environment," Energies, MDPI, vol. 13(2), pages 1-27, January.
    18. David Müller & Vladimir Shikhman, 2022. "Network manipulation algorithm based on inexact alternating minimization," Computational Management Science, Springer, vol. 19(4), pages 627-664, October.
    19. Mehdi Karimi & Levent Tunçel, 2020. "Primal–Dual Interior-Point Methods for Domain-Driven Formulations," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 591-621, May.
    20. Fosgerau, Mogens & Melo, Emerson & Shum, Matthew & Sørensen, Jesper R.-V., 2021. "Some remarks on CCP-based estimators of dynamic models," Economics Letters, Elsevier, vol. 204(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:204:y:2025:i:1:d:10.1007_s10957-024-02599-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.