IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v90y2024i4d10.1007_s10898-024-01429-6.html
   My bibliography  Save this article

On convergence of a q-random coordinate constrained algorithm for non-convex problems

Author

Listed:
  • A. Ghaffari-Hadigheh

    (Azarbaijan Shahid Madani University)

  • L. Sinjorgo

    (Tilburg University)

  • R. Sotirov

    (Tilburg University)

Abstract

We propose a random coordinate descent algorithm for optimizing a non-convex objective function subject to one linear constraint and simple bounds on the variables. Although it is common use to update only two random coordinates simultaneously in each iteration of a coordinate descent algorithm, our algorithm allows updating arbitrary number of coordinates. We provide a proof of convergence of the algorithm. The convergence rate of the algorithm improves when we update more coordinates per iteration. Numerical experiments on large scale instances of different optimization problems show the benefit of updating many coordinates simultaneously.

Suggested Citation

  • A. Ghaffari-Hadigheh & L. Sinjorgo & R. Sotirov, 2024. "On convergence of a q-random coordinate constrained algorithm for non-convex problems," Journal of Global Optimization, Springer, vol. 90(4), pages 843-868, December.
  • Handle: RePEc:spr:jglopt:v:90:y:2024:i:4:d:10.1007_s10898-024-01429-6
    DOI: 10.1007/s10898-024-01429-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01429-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01429-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoai Le Thi & Mahdi Moeini & Tao Pham Dinh & Joaquim Judice, 2012. "A DC programming approach for solving the symmetric Eigenvalue Complementarity Problem," Computational Optimization and Applications, Springer, vol. 51(3), pages 1097-1117, April.
    2. Andrei Patrascu & Ion Necoara, 2015. "Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization," Journal of Global Optimization, Springer, vol. 61(1), pages 19-46, January.
    3. Yurii Nesterov, 2018. "Lectures on Convex Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-91578-4, June.
    4. NESTEROV, Yurii, 2014. "Subgradient methods for huge-scale optimization problems," LIDAM Reprints CORE 2593, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Amir Beck, 2014. "The 2-Coordinate Descent Method for Solving Double-Sided Simplex Constrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 892-919, September.
    6. NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
    8. Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.
    9. Polina Bombina & Brendan Ames, 2020. "Convex Optimization for the Densest Subgraph and Densest Submatrix Problems," SN Operations Research Forum, Springer, vol. 1(3), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ion Necoara & Yurii Nesterov & François Glineur, 2017. "Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 227-254, April.
    2. Andrei Patrascu & Ion Necoara, 2015. "Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization," Journal of Global Optimization, Springer, vol. 61(1), pages 19-46, January.
    3. Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.
    4. Ching-pei Lee & Stephen J. Wright, 2020. "Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 151-187, April.
    5. R. Lopes & S. A. Santos & P. J. S. Silva, 2019. "Accelerating block coordinate descent methods with identification strategies," Computational Optimization and Applications, Springer, vol. 72(3), pages 609-640, April.
    6. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    7. Sjur Didrik Flåm, 2019. "Blocks of coordinates, stochastic programming, and markets," Computational Management Science, Springer, vol. 16(1), pages 3-16, February.
    8. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    9. Kimon Fountoulakis & Rachael Tappenden, 2018. "A flexible coordinate descent method," Computational Optimization and Applications, Springer, vol. 70(2), pages 351-394, June.
    10. Niu, Yi-Shuai & Júdice, Joaquim & Le Thi, Hoai An & Pham, Dinh Tao, 2019. "Improved dc programming approaches for solving the quadratic eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 95-113.
    11. Jin Zhang & Xide Zhu, 2022. "Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 564-597, February.
    12. Cristofari, Andrea, 2023. "A decomposition method for lasso problems with zero-sum constraint," European Journal of Operational Research, Elsevier, vol. 306(1), pages 358-369.
    13. Zhigang Li & Mingchuan Zhang & Junlong Zhu & Ruijuan Zheng & Qikun Zhang & Qingtao Wu, 2018. "Stochastic Block-Coordinate Gradient Projection Algorithms for Submodular Maximization," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    14. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    15. Tao Sun & Yuejiao Sun & Yangyang Xu & Wotao Yin, 2020. "Markov chain block coordinate descent," Computational Optimization and Applications, Springer, vol. 75(1), pages 35-61, January.
    16. Yangyang Xu, 2019. "Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs," Computational Optimization and Applications, Springer, vol. 72(1), pages 87-113, January.
    17. Mingyi Hong & Tsung-Hui Chang & Xiangfeng Wang & Meisam Razaviyayn & Shiqian Ma & Zhi-Quan Luo, 2020. "A Block Successive Upper-Bound Minimization Method of Multipliers for Linearly Constrained Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 833-861, August.
    18. Cassioli, A. & Di Lorenzo, D. & Sciandrone, M., 2013. "On the convergence of inexact block coordinate descent methods for constrained optimization," European Journal of Operational Research, Elsevier, vol. 231(2), pages 274-281.
    19. Anastasiya Ivanova & Pavel Dvurechensky & Evgeniya Vorontsova & Dmitry Pasechnyuk & Alexander Gasnikov & Darina Dvinskikh & Alexander Tyurin, 2022. "Oracle Complexity Separation in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 462-490, June.
    20. I. V. Konnov, 2016. "Selective bi-coordinate variations for resource allocation type problems," Computational Optimization and Applications, Springer, vol. 64(3), pages 821-842, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:90:y:2024:i:4:d:10.1007_s10898-024-01429-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.