IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i2d10.1007_s10957-024-02385-7.html
   My bibliography  Save this article

Distributed Dual Subgradient Methods with Averaging and Applications to Grid Optimization

Author

Listed:
  • Haitian Liu

    (Tsinghua University)

  • Subhonmesh Bose

    (University of Illinois Urbana Champaign)

  • Hoa Dinh Nguyen

    (Kyushu University)

  • Ye Guo

    (Tsinghua University)

  • Thinh T. Doan

    (Virginia Tech)

  • Carolyn L. Beck

    (University of Illinois Urbana Champaign)

Abstract

We study finite-time performance of a recently proposed distributed dual subgradient (DDSG) method for convex-constrained multi-agent optimization problems. The algorithm enjoys performance guarantees on the last primal iterate, as opposed to those derived for ergodic means for standard DDSG algorithms. Our work improves the recently published convergence rate of $${{\mathcal {O}}}(\log T/\sqrt{T})$$ O ( log T / T ) with decaying step-sizes to $${{\mathcal {O}}}(1/\sqrt{T})$$ O ( 1 / T ) with constant step-size on a metric that combines sub-optimality and constraint violation. We then numerically evaluate the algorithm on three grid optimization problems. Namely, these are tie-line scheduling in multi-area power systems, coordination of distributed energy resources in radial distribution networks, and joint dispatch of transmission and distribution assets. The DDSG algorithm applies to each problem with various relaxations and linearizations of the power flow equations. The numerical experiments illustrate various properties of the DDSG algorithm–comparison with standard DDSG, impact of the number of agents, and why Nesterov-style acceleration can fail in DDSG settings.

Suggested Citation

  • Haitian Liu & Subhonmesh Bose & Hoa Dinh Nguyen & Ye Guo & Thinh T. Doan & Carolyn L. Beck, 2024. "Distributed Dual Subgradient Methods with Averaging and Applications to Grid Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1991-2024, November.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02385-7
    DOI: 10.1007/s10957-024-02385-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02385-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02385-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Andrea Simonetto & Hadi Jamali-Rad, 2016. "Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 172-197, January.
    2. Yuan, Zhao & Hesamzadeh, Mohammad Reza, 2017. "Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of distributed energy resources," Applied Energy, Elsevier, vol. 195(C), pages 600-615.
    3. Nesterov, Yu. & Shikhman, V., 2018. "Dual subgradient method with averaging for optimal resource allocation," European Journal of Operational Research, Elsevier, vol. 270(3), pages 907-916.
    4. Yurii Nesterov & Vladimir Shikhman, 2018. "Dual subgradient method with averaging for optimal resource allocation," LIDAM Reprints CORE 2973, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Wang, Jianxiao & Zhong, Haiwang & Lai, Xiaowen & Xia, Qing & Shu, Chang & Kang, Chongqing, 2017. "Distributed real-time demand response based on Lagrangian multiplier optimal selection approach," Applied Energy, Elsevier, vol. 190(C), pages 949-959.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitaly G. Il’ichev & Dmitry B. Rokhlin, 2022. "Internal Prices and Optimal Exploitation of Natural Resources," Mathematics, MDPI, vol. 10(11), pages 1-14, May.
    2. Yaohua Hu & Jiawen Li & Carisa Kwok Wai Yu, 2020. "Convergence rates of subgradient methods for quasi-convex optimization problems," Computational Optimization and Applications, Springer, vol. 77(1), pages 183-212, September.
    3. Chen, Houhe & Wang, Di & Zhang, Rufeng & Jiang, Tao & Li, Xue, 2022. "Optimal participation of ADN in energy and reserve markets considering TSO-DSO interface and DERs uncertainties," Applied Energy, Elsevier, vol. 308(C).
    4. Yang, Linfeng & Li, Wei & Xu, Yan & Zhang, Cuo & Chen, Shifei, 2021. "Two novel locally ideal three-period unit commitment formulations in power systems," Applied Energy, Elsevier, vol. 284(C).
    5. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    6. Kai Gong & Liwei Zhang, 2024. "Primal-Dual Algorithm for Distributed Optimization with Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 252-279, April.
    7. Pearson, Simon & Wellnitz, Sonja & Crespo del Granado, Pedro & Hashemipour, Naser, 2022. "The value of TSO-DSO coordination in re-dispatch with flexible decentralized energy sources: Insights for Germany in 2030," Applied Energy, Elsevier, vol. 326(C).
    8. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    9. Hadush, Samson Yemane & Meeus, Leonardo, 2018. "DSO-TSO cooperation issues and solutions for distribution grid congestion management," Energy Policy, Elsevier, vol. 120(C), pages 610-621.
    10. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    11. Martin Palovic, 2022. "Coordination of power network operators as a game-theoretical problem," Bremen Energy Working Papers 0040, Bremen Energy Research.
    12. Stennikov, Valery & Barakhtenko, Evgeny & Mayorov, Gleb & Sokolov, Dmitry & Zhou, Bin, 2022. "Coordinated management of centralized and distributed generation in an integrated energy system using a multi-agent approach," Applied Energy, Elsevier, vol. 309(C).
    13. Fernando E. Postigo Marcos & Carlos Mateo Domingo & Tomás Gómez San Román & Bryan Palmintier & Bri-Mathias Hodge & Venkat Krishnan & Fernando De Cuadra García & Barry Mather, 2017. "A Review of Power Distribution Test Feeders in the United States and the Need for Synthetic Representative Networks," Energies, MDPI, vol. 10(11), pages 1-14, November.
    14. R. Díaz Millán & M. Pentón Machado, 2019. "Inexact proximal $$\epsilon $$ϵ-subgradient methods for composite convex optimization problems," Journal of Global Optimization, Springer, vol. 75(4), pages 1029-1060, December.
    15. Honglei Liu & Deming Yuan & Baoyong Zhang, 2025. "Decentralized Online Strongly Convex Optimization with General Compressors and Random Disturbances," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-22, January.
    16. Fatemeh Najibi & Dimitra Apostolopoulou & Eduardo Alonso, 2021. "TSO-DSO Coordination Schemes to Facilitate Distributed Resources Integration," Sustainability, MDPI, vol. 13(14), pages 1-29, July.
    17. Đorđe Lazović & Željko Đurišić, 2023. "Advanced Flexibility Support through DSO-Coordinated Participation of DER Aggregators in the Balancing Market," Energies, MDPI, vol. 16(8), pages 1-26, April.
    18. Zhang, Xizheng & Wang, Zeyu & Lu, Zhangyu, 2022. "Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 306(PA).
    19. Biggar, Darryl, 2022. "Seven outstanding issues in energy network regulation," Energy Economics, Elsevier, vol. 115(C).
    20. Dagoumas, Athanasios S. & Polemis, Michael L., 2017. "An integrated model for assessing electricity retailer’s profitability with demand response," Applied Energy, Elsevier, vol. 198(C), pages 49-64.

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02385-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.