IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v201y2024i1d10.1007_s10957-024-02402-9.html
   My bibliography  Save this article

Generalized Newton Method with Positive Definite Regularization for Nonsmooth Optimization Problems with Nonisolated Solutions

Author

Listed:
  • Zijian Shi

    (Guangxi University)

  • Miantao Chao

    (Guangxi University)

Abstract

We propose a coderivative-based generalized regularized Newton method with positive definite regularization term (GRNM-PD) to solve $$C^{1,1}$$ C 1 , 1 optimization problems. In GRNM-PD, a general positive definite symmetric matrix is used to regularize the generalized Hessian, in contrast to the recently proposed GRNM, which uses the identity matrix. Our approach features global convergence and fast local convergence rate even for problems with nonisolated solutions. To this end, we introduce the p-order semismooth $${}^*$$ ∗ property which plays the same role in our analysis as Lipschitz continuity of the Hessian does in the $$C^2$$ C 2 case. Imposing only the metric q-subregularity of the gradient at a solution, we establish global convergence of the proposed algorithm as well as its local convergence rate, which can be superlinear, quadratic, or even higher than quadratic, depending on an algorithmic parameter $$\rho $$ ρ and the regularity parameters p and q. Specifically, choosing $$\rho $$ ρ to be one, we achieve quadratic local convergence rate under metric subregularity and the strong semismooth $${^*}$$ ∗ property. The algorithm is applied to a class of nonsmooth convex composite minimization problems through the machinery of forward–backward envelope. The greater flexibility in the choice of regularization matrices leads to notable improvement in practical performance. Numerical experiments on box-constrained quadratic programming problems demonstrate the efficiency of our algorithm.

Suggested Citation

  • Zijian Shi & Miantao Chao, 2024. "Generalized Newton Method with Positive Definite Regularization for Nonsmooth Optimization Problems with Nonisolated Solutions," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 396-432, April.
  • Handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-024-02402-9
    DOI: 10.1007/s10957-024-02402-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02402-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02402-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yurii Nesterov, 2018. "Lectures on Convex Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-91578-4, December.
    2. Boris Mordukhovich & Wei Ouyang, 2015. "Higher-order metric subregularity and its applications," Journal of Global Optimization, Springer, vol. 63(4), pages 777-795, December.
    3. Defeng Sun & Jie Sun, 2002. "Semismooth Matrix-Valued Functions," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 150-169, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    2. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    3. Amos Uderzo, 2016. "A Strong Metric Subregularity Analysis of Nonsmooth Mappings Via Steepest Displacement Rate," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 573-599, November.
    4. M. L. Flegel & C. Kanzow, 2007. "Equivalence of Two Nondegeneracy Conditions for Semidefinite Programs," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 381-397, December.
    5. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    6. Xin Yang & Lingling Xu, 2023. "Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems," Journal of Global Optimization, Springer, vol. 87(2), pages 939-964, November.
    7. Egor Gladin & Alexander Gasnikov & Pavel Dvurechensky, 2025. "Accuracy Certificates for Convex Minimization with Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-23, January.
    8. Pavel Shcherbakov & Mingyue Ding & Ming Yuchi, 2021. "Random Sampling Many-Dimensional Sets Arising in Control," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
    9. Sangho Kum & Yongdo Lim, 2010. "Penalized complementarity functions on symmetric cones," Journal of Global Optimization, Springer, vol. 46(3), pages 475-485, March.
    10. Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
    11. Y. D. Chen & Y. Gao & Y.-J. Liu, 2010. "An Inexact SQP Newton Method for Convex SC1 Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 33-49, July.
    12. Jean-Jacques Forneron, 2023. "Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models," Papers 2301.07196, arXiv.org, revised Feb 2023.
    13. Azimbek Khudoyberdiev & Shabir Ahmad & Israr Ullah & DoHyeun Kim, 2020. "An Optimization Scheme Based on Fuzzy Logic Control for Efficient Energy Consumption in Hydroponics Environment," Energies, MDPI, vol. 13(2), pages 1-27, January.
    14. David Müller & Vladimir Shikhman, 2022. "Network manipulation algorithm based on inexact alternating minimization," Computational Management Science, Springer, vol. 19(4), pages 627-664, October.
    15. Mehdi Karimi & Levent Tunçel, 2020. "Primal–Dual Interior-Point Methods for Domain-Driven Formulations," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 591-621, May.
    16. Fosgerau, Mogens & Melo, Emerson & Shum, Matthew & Sørensen, Jesper R.-V., 2021. "Some remarks on CCP-based estimators of dynamic models," Economics Letters, Elsevier, vol. 204(C).
    17. Akatsuki Nishioka & Mitsuru Toyoda & Mirai Tanaka & Yoshihiro Kanno, 2025. "On a minimization problem of the maximum generalized eigenvalue: properties and algorithms," Computational Optimization and Applications, Springer, vol. 90(1), pages 303-336, January.
    18. Ramon de Punder & Timo Dimitriadis & Rutger-Jan Lange, 2024. "Kullback-Leibler-based characterizations of score-driven updates," Papers 2408.02391, arXiv.org, revised Sep 2024.
    19. Pham Duy Khanh & Boris S. Mordukhovich & Vo Thanh Phat & Dat Ba Tran, 2023. "Generalized damped Newton algorithms in nonsmooth optimization via second-order subdifferentials," Journal of Global Optimization, Springer, vol. 86(1), pages 93-122, May.
    20. Jong-Shi Pang & Defeng Sun & Jie Sun, 2003. "Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 39-63, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-024-02402-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.