IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v201y2024i1d10.1007_s10957-023-02368-0.html
   My bibliography  Save this article

An Outer Space Approach to Tackle Generalized Affine Fractional Program Problems

Author

Listed:
  • Hongwei Jiao

    (Henan Institute of Science and Technology)

  • Binbin Li

    (Henan Institute of Science and Technology)

  • Youlin Shang

    (Henan University of Science and Technology)

Abstract

This paper aims to globally solve a generalized affine fractional program problem (GAFPP). Firstly, by introducing some outer space variables and performing equivalent transformations, we can derive the equivalence problem (EP) of the GAFPP. Secondly, by constructing a novel linear relaxation method, we can deduce the affine relaxation problem (ARP) of the EP. Next, by solving the ARP to compute the lower bound, we propose a new outer space branch-and-bound algorithm for tackling the GAFPP. Then, the global convergence of the algorithm is proved, and the computational complexity of the algorithm in the worst case is analyzed. Finally, numerical experimental results are reported to illustrate the effectiveness of the algorithm.

Suggested Citation

  • Hongwei Jiao & Binbin Li & Youlin Shang, 2024. "An Outer Space Approach to Tackle Generalized Affine Fractional Program Problems," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 1-35, April.
  • Handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-023-02368-0
    DOI: 10.1007/s10957-023-02368-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02368-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02368-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Hong-Wei & Liu, San-Yang, 2015. "A practicable branch and bound algorithm for sum of linear ratios problem," European Journal of Operational Research, Elsevier, vol. 243(3), pages 723-730.
    2. Nesterov, Y. & Nemirovskii, A., 1995. "An interior-point method for generalized linear-fractional programming," LIDAM Reprints CORE 1168, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Benson, Harold P., 2007. "A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios problem," European Journal of Operational Research, Elsevier, vol. 182(2), pages 597-611, October.
    4. Jiao, Hongwei & Li, Binbin, 2022. "Solving min–max linear fractional programs based on image space branch-and-bound scheme," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    6. Jiao, Hongwei & Ma, Junqiao, 2022. "An efficient algorithm and complexity result for solving the sum of general affine ratios problem," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Bingdi & Shen, Peiping, 2024. "An efficient branch and bound reduction algorithm for globally solving linear fractional programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Hongwei Jiao & Binbin Li & Wenqiang Yang, 2024. "A criterion-space branch-reduction-bound algorithm for solving generalized multiplicative problems," Journal of Global Optimization, Springer, vol. 89(3), pages 597-632, July.
    3. Jiao, Hongwei & Ma, Junqiao, 2022. "An efficient algorithm and complexity result for solving the sum of general affine ratios problem," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Hezhi Luo & Youmin Xu & Huixian Wu & Guoqiang Wang, 2025. "A New branch-and-cut algorithm for linear sum-of-ratios problem based on SLO method and LO relaxation," Computational Optimization and Applications, Springer, vol. 90(1), pages 257-301, January.
    5. Hou, Zhisong & Liu, Sanyang, 2023. "A spatial branch-reduction-bound algorithm for solving generalized linear fractional problems globally," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    6. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    7. Mojtaba Borza & Azmin Sham Rambely, 2021. "A Linearization to the Sum of Linear Ratios Programming Problem," Mathematics, MDPI, vol. 9(9), pages 1-10, April.
    8. Chen, Kun & Zhu, Joe, 2020. "Additive slacks-based measure: Computational strategy and extension to network DEA," Omega, Elsevier, vol. 91(C).
    9. T Drezner & Z Drezner & P Kalczynski, 2011. "A cover-based competitive location model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 100-113, January.
    10. Shen, Peiping & Zhu, Zeyi & Chen, Xiao, 2019. "A practicable contraction approach for the sum of the generalized polynomial ratios problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 36-48.
    11. X. Liu & Y.L. Gao & B. Zhang & F.P. Tian, 2019. "A New Global Optimization Algorithm for a Class of Linear Fractional Programming," Mathematics, MDPI, vol. 7(9), pages 1-21, September.
    12. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    13. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    14. Chen, Ya & Pan, Yongbin & Liu, Haoxiang & Wu, Huaqing & Deng, Guangwei, 2023. "Efficiency analysis of Chinese universities with shared inputs: An aggregated two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    15. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne, 2020. "Plant capacity notions in a non-parametric framework: a brief review and new graph or non-oriented plant capacities," Annals of Operations Research, Springer, vol. 288(2), pages 837-860, May.
    16. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    17. Johannes König & Carsten Schröder, 2018. "Inequality-minimization with a given public budget," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 607-629, December.
    18. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    19. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    20. Yu, Shasha & Lei, Ming & Deng, Honghui, 2023. "Evaluation to fixed-sum-outputs DMUs by non-oriented equilibrium efficient frontier DEA approach with Nash bargaining-based selection," Omega, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-023-02368-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.