A branch and cut algorithm to optimize a weighted sum-of-ratios in multiobjective mixed-integer fractional programming
Author
Abstract
Suggested Citation
DOI: 10.1007/s00291-024-00782-y
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Jiao, Hong-Wei & Liu, San-Yang, 2015. "A practicable branch and bound algorithm for sum of linear ratios problem," European Journal of Operational Research, Elsevier, vol. 243(3), pages 723-730.
- Wu, Tai-Hsi, 1997. "A note on a global approach for general 0-1 fractional programming," European Journal of Operational Research, Elsevier, vol. 101(1), pages 220-223, August.
- Ashtiani, Alireza M. & Ferreira, Paulo A.V., 2015. "A branch-and-cut algorithm for a class of sum-of-ratios problems," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 596-608.
- Zerdani, Ouiza & Moulai, Mustapha, 2011. "Optimization over an integer efficient set of a Multiple Objective Linear Fractional Problem," MPRA Paper 35579, University Library of Munich, Germany.
- Benson, Harold P., 2007. "A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios problem," European Journal of Operational Research, Elsevier, vol. 182(2), pages 597-611, October.
- A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
- Kirlik, Gokhan & Sayın, Serpil, 2014. "A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 479-488.
- Banu Lokman & Murat Köksalan, 2013. "Finding all nondominated points of multi-objective integer programs," Journal of Global Optimization, Springer, vol. 57(2), pages 347-365, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiao, Hongwei & Ma, Junqiao, 2022. "An efficient algorithm and complexity result for solving the sum of general affine ratios problem," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Shen, Peiping & Zhu, Zeyi & Chen, Xiao, 2019. "A practicable contraction approach for the sum of the generalized polynomial ratios problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 36-48.
- Huang, Bingdi & Shen, Peiping, 2024. "An efficient branch and bound reduction algorithm for globally solving linear fractional programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Hongwei Jiao & Binbin Li & Youlin Shang, 2024. "An Outer Space Approach to Tackle Generalized Affine Fractional Program Problems," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 1-35, April.
- Hongwei Jiao & Binbin Li & Wenqiang Yang, 2024. "A criterion-space branch-reduction-bound algorithm for solving generalized multiplicative problems," Journal of Global Optimization, Springer, vol. 89(3), pages 597-632, July.
- Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
- Bechler, Georg & Steinhardt, Claudius & Mackert, Jochen & Klein, Robert, 2021. "Product line optimization in the presence of preferences for compromise alternatives," European Journal of Operational Research, Elsevier, vol. 288(3), pages 902-917.
- Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
- David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
- Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
- Hezhi Luo & Youmin Xu & Huixian Wu & Guoqiang Wang, 2025. "A New branch-and-cut algorithm for linear sum-of-ratios problem based on SLO method and LO relaxation," Computational Optimization and Applications, Springer, vol. 90(1), pages 257-301, January.
- Ozgu Turgut & Evrim Dalkiran & Alper E. Murat, 2019. "An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems," Journal of Global Optimization, Springer, vol. 75(1), pages 35-62, September.
- Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2019. "Preprocessing and cut generation techniques for multi-objective binary programming," European Journal of Operational Research, Elsevier, vol. 274(3), pages 858-875.
- Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
- Mojtaba Borza & Azmin Sham Rambely, 2021. "A Linearization to the Sum of Linear Ratios Programming Problem," Mathematics, MDPI, vol. 9(9), pages 1-10, April.
- William Pettersson & Melih Ozlen, 2020. "Multiobjective Integer Programming: Synergistic Parallel Approaches," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 461-472, April.
- Tolga Bektaş, 2018. "Disjunctive Programming for Multiobjective Discrete Optimisation," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 625-633, November.
- Chen, Kun & Zhu, Joe, 2020. "Additive slacks-based measure: Computational strategy and extension to network DEA," Omega, Elsevier, vol. 91(C).
- Natashia Boland & Hadi Charkhgard & Martin Savelsbergh, 2015. "A Criterion Space Search Algorithm for Biobjective Integer Programming: The Balanced Box Method," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 735-754, November.
- Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:47:y:2025:i:2:d:10.1007_s00291-024-00782-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/spr/orspec/v47y2025i2d10.1007_s00291-024-00782-y.html