IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v47y2025i2d10.1007_s00291-024-00782-y.html
   My bibliography  Save this article

A branch and cut algorithm to optimize a weighted sum-of-ratios in multiobjective mixed-integer fractional programming

Author

Listed:
  • João Paulo Costa

    (CeBER, Faculty of Economics
    INESC Coimbra)

  • Maria João Alves

    (CeBER, Faculty of Economics
    INESC Coimbra)

Abstract

Multiobjective linear fractional programming is useful to model multiobjective problems where all or some of the objective functions are a ratio or proportion of one linear/affine function to another linear/affine function. In practice, many of such problems include integer variables. If the weighted-sum scalarization is used to compute efficient solutions to the multiobjective problem, then the scalar problem to be solved for each weight vector turns out to be a weighted sum-of-ratios. There are several algorithms reported in the literature to optimize weighted sum-of-ratios, but almost all of them cannot deal with integer variables. In this paper we propose a Branch & Cut algorithm to optimize weighted-sums of the objective functions in multiobjective mixed integer fractional programming (MOMIFP). Several theoretical properties that support the algorithm are presented and proved. Computational experiments with randomly generated general problems are presented and discussed, which show that the algorithm is able to deal with practical MOMIFP problems.

Suggested Citation

  • João Paulo Costa & Maria João Alves, 2025. "A branch and cut algorithm to optimize a weighted sum-of-ratios in multiobjective mixed-integer fractional programming," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 47(2), pages 667-695, June.
  • Handle: RePEc:spr:orspec:v:47:y:2025:i:2:d:10.1007_s00291-024-00782-y
    DOI: 10.1007/s00291-024-00782-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-024-00782-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-024-00782-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Hong-Wei & Liu, San-Yang, 2015. "A practicable branch and bound algorithm for sum of linear ratios problem," European Journal of Operational Research, Elsevier, vol. 243(3), pages 723-730.
    2. Wu, Tai-Hsi, 1997. "A note on a global approach for general 0-1 fractional programming," European Journal of Operational Research, Elsevier, vol. 101(1), pages 220-223, August.
    3. Ashtiani, Alireza M. & Ferreira, Paulo A.V., 2015. "A branch-and-cut algorithm for a class of sum-of-ratios problems," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 596-608.
    4. Zerdani, Ouiza & Moulai, Mustapha, 2011. "Optimization over an integer efficient set of a Multiple Objective Linear Fractional Problem," MPRA Paper 35579, University Library of Munich, Germany.
    5. Benson, Harold P., 2007. "A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios problem," European Journal of Operational Research, Elsevier, vol. 182(2), pages 597-611, October.
    6. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    7. Kirlik, Gokhan & Sayın, Serpil, 2014. "A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 479-488.
    8. Banu Lokman & Murat Köksalan, 2013. "Finding all nondominated points of multi-objective integer programs," Journal of Global Optimization, Springer, vol. 57(2), pages 347-365, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Hongwei & Ma, Junqiao, 2022. "An efficient algorithm and complexity result for solving the sum of general affine ratios problem," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Huang, Bingdi & Shen, Peiping, 2024. "An efficient branch and bound reduction algorithm for globally solving linear fractional programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Hongwei Jiao & Binbin Li & Youlin Shang, 2024. "An Outer Space Approach to Tackle Generalized Affine Fractional Program Problems," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 1-35, April.
    4. Shen, Peiping & Zhu, Zeyi & Chen, Xiao, 2019. "A practicable contraction approach for the sum of the generalized polynomial ratios problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 36-48.
    5. Hongwei Jiao & Binbin Li & Wenqiang Yang, 2024. "A criterion-space branch-reduction-bound algorithm for solving generalized multiplicative problems," Journal of Global Optimization, Springer, vol. 89(3), pages 597-632, July.
    6. Georg Bechler & Claudius Steinhardt & Jochen Mackert, 2021. "On the Linear Integration of Attraction Choice Models in Business Optimization Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-13, March.
    7. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    8. Hadi Charkhgard & Martin Savelsbergh & Masoud Talebian, 2018. "Nondominated Nash points: application of biobjective mixed integer programming," 4OR, Springer, vol. 16(2), pages 151-171, June.
    9. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2017. "The Quadrant Shrinking Method: A simple and efficient algorithm for solving tri-objective integer programs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 873-885.
    10. Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2015. "On the representation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 245(3), pages 767-778.
    11. Bechler, Georg & Steinhardt, Claudius & Mackert, Jochen & Klein, Robert, 2021. "Product line optimization in the presence of preferences for compromise alternatives," European Journal of Operational Research, Elsevier, vol. 288(3), pages 902-917.
    12. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    13. Hou, Zhisong & Liu, Sanyang, 2023. "A spatial branch-reduction-bound algorithm for solving generalized linear fractional problems globally," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    14. De Santis, Marianna & Grani, Giorgio & Palagi, Laura, 2020. "Branching with hyperplanes in the criterion space: The frontier partitioner algorithm for biobjective integer programming," European Journal of Operational Research, Elsevier, vol. 283(1), pages 57-69.
    15. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    16. Özarık, Sami Serkan & Lokman, Banu & Köksalan, Murat, 2020. "Distribution based representative sets for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 632-643.
    17. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    18. Hezhi Luo & Youmin Xu & Huixian Wu & Guoqiang Wang, 2025. "A New branch-and-cut algorithm for linear sum-of-ratios problem based on SLO method and LO relaxation," Computational Optimization and Applications, Springer, vol. 90(1), pages 257-301, January.
    19. Kerstin Dächert & Kathrin Klamroth, 2015. "A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems," Journal of Global Optimization, Springer, vol. 61(4), pages 643-676, April.
    20. Ozgu Turgut & Evrim Dalkiran & Alper E. Murat, 2019. "An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems," Journal of Global Optimization, Springer, vol. 75(1), pages 35-62, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:47:y:2025:i:2:d:10.1007_s00291-024-00782-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.