IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v176y2018i1d10.1007_s10957-017-1206-0.html
   My bibliography  Save this article

A Multi-Objective Interpretation of Optimal Transport

Author

Listed:
  • Johannes M. Schumacher

    (University of Amsterdam)

Abstract

This paper connects discrete optimal transport to a certain class of multi-objective optimization problems. In both settings, the decision variables can be organized into a matrix. In the multi-objective problem, the notion of Pareto efficiency is defined in terms of the objectives together with nonnegativity constraints and with equality constraints that are specified in terms of column sums. A second set of equality constraints, defined in terms of row sums, is used to single out particular points in the Pareto-efficient set which are referred to as “balanced solutions.” Examples from several fields are shown in which this solution concept appears naturally. Balanced solutions are shown to be in one-to-one correspondence with solutions of optimal transport problems. As an example of the use of alternative interpretations, the computation of solutions via regularization is discussed.

Suggested Citation

  • Johannes M. Schumacher, 2018. "A Multi-Objective Interpretation of Optimal Transport," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 94-119, January.
  • Handle: RePEc:spr:joptap:v:176:y:2018:i:1:d:10.1007_s10957-017-1206-0
    DOI: 10.1007/s10957-017-1206-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1206-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1206-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balasko, Yves, 1979. "Budget-constrained Pareto-efficient allocations," Journal of Economic Theory, Elsevier, vol. 21(3), pages 359-379, December.
    2. Alfred Galichon, 2016. "Optimal Transport Methods in Economics," Economics Books, Princeton University Press, edition 1, number 10870.
    3. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    4. Alfred Galichon, 2016. "Optimal transport methods in economics," Post-Print hal-03256830, HAL.
    5. Green, Jerry R. & Scheinkman, Josè Alexandre (ed.), 1979. "General Equilibrium, Growth, and Trade," Elsevier Monographs, Elsevier, edition 1, number 9780122987502.
    6. Gale, David & Sobel, Joel, 1982. "On optimal distribution of output from a jointly owned resource," Journal of Mathematical Economics, Elsevier, vol. 9(1-2), pages 51-59, January.
    7. Pazdera, Jaroslav & Schumacher, Johannes M. & Werker, Bas J.M., 2017. "The composite iteration algorithm for finding efficient and financially fair risk-sharing rules," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 122-133.
    8. Bühlmann, Hans & Jewell, William S., 1979. "Optimal Risk Exchanges," ASTIN Bulletin, Cambridge University Press, vol. 10(3), pages 243-262, December.
    9. H. Isermann, 1974. "Technical Note—Proper Efficiency and the Linear Vector Maximum Problem," Operations Research, INFORMS, vol. 22(1), pages 189-191, February.
    10. Friedrich Pukelsheim, 2014. "Biproportional scaling of matrices and the iterative proportional fitting procedure," Annals of Operations Research, Springer, vol. 215(1), pages 269-283, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schumacher, Johannes M., 2021. "Ex-ante estate division under strong Pareto efficiency," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 10-24.
    2. Pazdera, Jaroslav & Schumacher, Johannes M. & Werker, Bas J.M., 2017. "The composite iteration algorithm for finding efficient and financially fair risk-sharing rules," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 122-133.
    3. He, Simin & Wu, Jiabin & Zhang, Hanzhe, 2021. "Experimental and Noncooperative Analyses of Decentralized Matching with Transfers," Working Papers 2021-2, Michigan State University, Department of Economics.
    4. Pablo D. Fajgelbaum & Edouard Schaal, 2020. "Optimal Transport Networks in Spatial Equilibrium," Econometrica, Econometric Society, vol. 88(4), pages 1411-1452, July.
    5. Carlier, Guillaume & Dupuy, Arnaud & Galichon, Alfred & Sun, Yifei, 2021. "SISTA: Learning Optimal Transport Costs under Sparsity Constraints," IZA Discussion Papers 14397, Institute of Labor Economics (IZA).
    6. Vuillermot, Pierre-A. & Zambrini, J.-C., 2020. "On Bernstein processes generated by hierarchies of linear parabolic systems in Rd," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2974-3004.
    7. Arthur Charpentier & Alfred Galichon & Lucas Vernet, 2019. "Optimal transport on large networks, a practitioner's guide," Papers 1907.02320, arXiv.org, revised Aug 2019.
    8. Fallou Niakh, 2023. "A fixed point approach for computing actuarially fair Pareto optimal risk-sharing rules," Papers 2303.05421, arXiv.org, revised Jul 2023.
    9. Odran Bonnet & Alfred Galichon & Yu-Wei Hsieh & Keith O’Hara & Matt Shum, 2022. "Yogurts Choose Consumers? Estimation of Random-Utility Models via Two-Sided Matching," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(6), pages 3085-3114.
    10. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Adrien Bilal & Esteban Rossi‐Hansberg, 2021. "Location as an Asset," Econometrica, Econometric Society, vol. 89(5), pages 2459-2495, September.
    12. Alexander V. Kolesnikov & Fedor Sandomirskiy & Aleh Tsyvinski & Alexander P. Zimin, 2022. "Beckmann's approach to multi-item multi-bidder auctions," Papers 2203.06837, arXiv.org, revised Sep 2022.
    13. Arthur Charpentier & Emmanuel Flachaire & Ewen Gallic, 2023. "Optimal Transport for Counterfactual Estimation: A Method for Causal Inference," Papers 2301.07755, arXiv.org.
    14. Bao, Hailong & Ponds, Eduard H.M. & Schumacher, Johannes M., 2017. "Multi-period risk sharing under financial fairness," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 49-66.
    15. Alfred Galichon & Bernard Salani'e, 2021. "Cupid's Invisible Hand: Social Surplus and Identification in Matching Models," Papers 2106.02371, arXiv.org, revised Jan 2023.
    16. Florian Gunsilius & Susanne M. Schennach, 2017. "A nonlinear principal component decomposition," CeMMAP working papers 16/17, Institute for Fiscal Studies.
    17. Sergio Ocampo, 2019. "A task-based theory of occupations with multidimensional heterogeneity," 2019 Meeting Papers 477, Society for Economic Dynamics.
    18. Mario Ghossoub & David Saunders, 2020. "On the Continuity of the Feasible Set Mapping in Optimal Transport," Papers 2009.12838, arXiv.org.
    19. Itai Arieli & Yakov Babichenko & Fedor Sandomirskiy, 2023. "Feasible Conditional Belief Distributions," Papers 2307.07672, arXiv.org, revised Nov 2024.
    20. Brendan Pass, 2019. "Interpolating between matching and hedonic pricing models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(2), pages 393-419, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:176:y:2018:i:1:d:10.1007_s10957-017-1206-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.