IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v162y2014i1d10.1007_s10957-013-0426-1.html
   My bibliography  Save this article

Branch-and-Lift Algorithm for Deterministic Global Optimization in Nonlinear Optimal Control

Author

Listed:
  • Boris Houska

    (Imperial College London)

  • Benoît Chachuat

    (Imperial College London)

Abstract

This paper presents a branch-and-lift algorithm for solving optimal control problems with smooth nonlinear dynamics and potentially nonconvex objective and constraint functionals to guaranteed global optimality. This algorithm features a direct sequential method and builds upon a generic, spatial branch-and-bound algorithm. A new operation, called lifting, is introduced, which refines the control parameterization via a Gram–Schmidt orthogonalization process, while simultaneously eliminating control subregions that are either infeasible or that provably cannot contain any global optima. Conditions are given under which the image of the control parameterization error in the state space contracts exponentially as the parameterization order is increased, thereby making the lifting operation efficient. A computational technique based on ellipsoidal calculus is also developed that satisfies these conditions. The practical applicability of branch-and-lift is illustrated in a numerical example.

Suggested Citation

  • Boris Houska & Benoît Chachuat, 2014. "Branch-and-Lift Algorithm for Deterministic Global Optimization in Nonlinear Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 208-248, July.
  • Handle: RePEc:spr:joptap:v:162:y:2014:i:1:d:10.1007_s10957-013-0426-1
    DOI: 10.1007/s10957-013-0426-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0426-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0426-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph Scott & Paul Barton, 2013. "Improved relaxations for the parametric solutions of ODEs using differential inequalities," Journal of Global Optimization, Springer, vol. 57(1), pages 143-176, September.
    2. Agustín Bompadre & Alexander Mitsos & Benoît Chachuat, 2013. "Convergence analysis of Taylor models and McCormick-Taylor models," Journal of Global Optimization, Springer, vol. 57(1), pages 75-114, September.
    3. Lars Gruene & Willi Semmler, 2002. "Using Dynamic Programming with Adaptive Grid Scheme to Solve Nonlinear Dynamic Models in Economics," Computing in Economics and Finance 2002 99, Society for Computational Economics.
    4. Eligius M. T. Hendrix & Boglárka G.-Tóth, 2010. "Nonlinear Programming algorithms," Springer Optimization and Its Applications, in: Introduction to Nonlinear and Global Optimization, chapter 5, pages 91-136, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chrysoula D. Kappatou & Dominik Bongartz & Jaromił Najman & Susanne Sass & Alexander Mitsos, 2022. "Global dynamic optimization with Hammerstein–Wiener models embedded," Journal of Global Optimization, Springer, vol. 84(2), pages 321-347, October.
    2. Jason Ye & Joseph K. Scott, 2024. "Modification and improved implementation of the RPD method for computing state relaxations for global dynamic optimization," Journal of Global Optimization, Springer, vol. 89(4), pages 833-861, August.
    3. Ishan Bajaj & M. M. Faruque Hasan, 2020. "Global dynamic optimization using edge-concave underestimator," Journal of Global Optimization, Springer, vol. 77(3), pages 487-512, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spencer D. Schaber & Joseph K. Scott & Paul I. Barton, 2019. "Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs," Journal of Global Optimization, Springer, vol. 73(1), pages 113-151, January.
    2. M. Soledad Aronna & J. Frédéric Bonnans & Pierre Martinon, 2013. "A Shooting Algorithm for Optimal Control Problems with Singular Arcs," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 419-459, August.
    3. D. Gerard & M. Köppe & Q. Louveaux, 2017. "Guided dive for the spatial branch-and-bound," Journal of Global Optimization, Springer, vol. 68(4), pages 685-711, August.
    4. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    5. Brage Rugstad Knudsen & Hanne Kauko & Trond Andresen, 2019. "An Optimal-Control Scheme for Coordinated Surplus-Heat Exchange in Industry Clusters," Energies, MDPI, vol. 12(10), pages 1-22, May.
    6. Aydogmus, Ozgur & TOR, Ali Hakan, 2021. "A Modified Multiple Shooting Algorithm for Parameter Estimation in ODEs Using Adjoint Sensitivity Analysis," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    7. Jai Rajyaguru & Mario E. Villanueva & Boris Houska & Benoît Chachuat, 2017. "Chebyshev model arithmetic for factorable functions," Journal of Global Optimization, Springer, vol. 68(2), pages 413-438, June.
    8. Chrysoula D. Kappatou & Dominik Bongartz & Jaromił Najman & Susanne Sass & Alexander Mitsos, 2022. "Global dynamic optimization with Hammerstein–Wiener models embedded," Journal of Global Optimization, Springer, vol. 84(2), pages 321-347, October.
    9. Dawid, Herbert & Greiner, Alfred & Zou, Benteng, 2010. "Optimal foreign investment dynamics in the presence of technological spillovers," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 296-313, March.
    10. Matthew E. Wilhelm & Chenyu Wang & Matthew D. Stuber, 2023. "Convex and concave envelopes of artificial neural network activation functions for deterministic global optimization," Journal of Global Optimization, Springer, vol. 85(3), pages 569-594, March.
    11. Jaromił Najman & Alexander Mitsos, 2019. "On tightness and anchoring of McCormick and other relaxations," Journal of Global Optimization, Springer, vol. 74(4), pages 677-703, August.
    12. Kamil A. Khan & Paul I. Barton, 2014. "Generalized Derivatives for Solutions of Parametric Ordinary Differential Equations with Non-differentiable Right-Hand Sides," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 355-386, November.
    13. Zebian, Hussam & Gazzino, Marco & Mitsos, Alexander, 2012. "Multi-variable optimization of pressurized oxy-coal combustion," Energy, Elsevier, vol. 38(1), pages 37-57.
    14. Daniel Word & Jia Kang & Johan Akesson & Carl Laird, 2014. "Efficient parallel solution of large-scale nonlinear dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 59(3), pages 667-688, December.
    15. Paul Armand & Joël Benoist & Riadh Omheni & Vincent Pateloup, 2014. "Study of a primal-dual algorithm for equality constrained minimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 405-433, December.
    16. Sebastian Sager & Mathieu Claeys & Frédéric Messine, 2015. "Efficient upper and lower bounds for global mixed-integer optimal control," Journal of Global Optimization, Springer, vol. 61(4), pages 721-743, April.
    17. Sadrani, Mohammad & Tirachini, Alejandro & Antoniou, Constantinos, 2022. "Vehicle dispatching plan for minimizing passenger waiting time in a corridor with buses of different sizes: Model formulation and solution approaches," European Journal of Operational Research, Elsevier, vol. 299(1), pages 263-282.
    18. Jason Ye & Joseph K. Scott, 2024. "Modification and improved implementation of the RPD method for computing state relaxations for global dynamic optimization," Journal of Global Optimization, Springer, vol. 89(4), pages 833-861, August.
    19. Rohit Kannan & Paul I. Barton, 2018. "Convergence-order analysis of branch-and-bound algorithms for constrained problems," Journal of Global Optimization, Springer, vol. 71(4), pages 753-813, August.
    20. Dominik Bongartz & Alexander Mitsos, 2017. "Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations," Journal of Global Optimization, Springer, vol. 69(4), pages 761-796, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:162:y:2014:i:1:d:10.1007_s10957-013-0426-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.