IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i4d10.1007_s10898-024-01381-5.html
   My bibliography  Save this article

Modification and improved implementation of the RPD method for computing state relaxations for global dynamic optimization

Author

Listed:
  • Jason Ye

    (Georgia Institute of Technology)

  • Joseph K. Scott

    (Georgia Institute of Technology)

Abstract

This paper presents an improved method for computing convex and concave relaxations of the parametric solutions of ordinary differential equations (ODEs). These are called state relaxations and are crucial for solving dynamic optimization problems to global optimality via branch-and-bound (B &B). The new method improves upon an existing approach known as relaxation preserving dynamics (RPD). RPD is generally considered to be among the best available methods for computing state relaxations in terms of both efficiency and accuracy. However, it requires the solution of a hybrid dynamical system, whereas other similar methods only require the solution of a simple system of ODEs. This is problematic in the context of branch-and-bound because it leads to higher cost and reduced reliability (i.e., invalid relaxations can result if hybrid mode switches are not detected numerically). Moreover, there is no known sensitivity theory for the RPD hybrid system. This makes it impossible to compute subgradients of the RPD relaxations, which are essential for efficiently solving the associated B &B lower bounding problems. To address these limitations, this paper presents a small but important modification of the RPD theory, and a corresponding modification of its numerical implementation, that crucially allows state relaxations to be computed by solving a system of ODEs rather than a hybrid system. This new RPD method is then compared to the original using two examples and shown to be more efficient, more robust, and of almost identical accuracy.

Suggested Citation

  • Jason Ye & Joseph K. Scott, 2024. "Modification and improved implementation of the RPD method for computing state relaxations for global dynamic optimization," Journal of Global Optimization, Springer, vol. 89(4), pages 833-861, August.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:4:d:10.1007_s10898-024-01381-5
    DOI: 10.1007/s10898-024-01381-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01381-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01381-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spencer D. Schaber & Joseph K. Scott & Paul I. Barton, 2019. "Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs," Journal of Global Optimization, Springer, vol. 73(1), pages 113-151, January.
    2. Boris Houska & Benoît Chachuat, 2014. "Branch-and-Lift Algorithm for Deterministic Global Optimization in Nonlinear Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 208-248, July.
    3. Joseph Scott & Paul Barton, 2013. "Improved relaxations for the parametric solutions of ODEs using differential inequalities," Journal of Global Optimization, Springer, vol. 57(1), pages 143-176, September.
    4. Joseph Scott & Matthew Stuber & Paul Barton, 2011. "Generalized McCormick relaxations," Journal of Global Optimization, Springer, vol. 51(4), pages 569-606, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chrysoula D. Kappatou & Dominik Bongartz & Jaromił Najman & Susanne Sass & Alexander Mitsos, 2022. "Global dynamic optimization with Hammerstein–Wiener models embedded," Journal of Global Optimization, Springer, vol. 84(2), pages 321-347, October.
    2. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    3. Matthew E. Wilhelm & Chenyu Wang & Matthew D. Stuber, 2023. "Convex and concave envelopes of artificial neural network activation functions for deterministic global optimization," Journal of Global Optimization, Springer, vol. 85(3), pages 569-594, March.
    4. Jason Ye & Joseph K. Scott, 2023. "Extended McCormick relaxation rules for handling empty arguments representing infeasibility," Journal of Global Optimization, Springer, vol. 87(1), pages 57-95, September.
    5. Ishan Bajaj & M. M. Faruque Hasan, 2020. "Global dynamic optimization using edge-concave underestimator," Journal of Global Optimization, Springer, vol. 77(3), pages 487-512, July.
    6. Spencer D. Schaber & Joseph K. Scott & Paul I. Barton, 2019. "Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs," Journal of Global Optimization, Springer, vol. 73(1), pages 113-151, January.
    7. Matthew E. Wilhelm & Matthew D. Stuber, 2023. "Improved Convex and Concave Relaxations of Composite Bilinear Forms," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 174-204, April.
    8. Kamil A. Khan & Harry A. J. Watson & Paul I. Barton, 2017. "Differentiable McCormick relaxations," Journal of Global Optimization, Springer, vol. 67(4), pages 687-729, April.
    9. A. Skjäl & T. Westerlund & R. Misener & C. A. Floudas, 2012. "A Generalization of the Classical αBB Convex Underestimation via Diagonal and Nondiagonal Quadratic Terms," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 462-490, August.
    10. N. Kazazakis & C. S. Adjiman, 2018. "Arbitrarily tight $$\alpha $$ α BB underestimators of general non-linear functions over sub-optimal domains," Journal of Global Optimization, Springer, vol. 71(4), pages 815-844, August.
    11. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    12. Achim Wechsung & Joseph Scott & Harry Watson & Paul Barton, 2015. "Reverse propagation of McCormick relaxations," Journal of Global Optimization, Springer, vol. 63(1), pages 1-36, September.
    13. Jaromił Najman & Alexander Mitsos, 2019. "On tightness and anchoring of McCormick and other relaxations," Journal of Global Optimization, Springer, vol. 74(4), pages 677-703, August.
    14. Kamil A. Khan & Paul I. Barton, 2014. "Generalized Derivatives for Solutions of Parametric Ordinary Differential Equations with Non-differentiable Right-Hand Sides," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 355-386, November.
    15. M. Locatelli, 2024. "A new technique to derive tight convex underestimators (sometimes envelopes)," Computational Optimization and Applications, Springer, vol. 87(2), pages 475-499, March.
    16. Dominik Bongartz & Alexander Mitsos, 2017. "Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations," Journal of Global Optimization, Springer, vol. 69(4), pages 761-796, December.
    17. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    18. Achim Wechsung & Spencer Schaber & Paul Barton, 2014. "The cluster problem revisited," Journal of Global Optimization, Springer, vol. 58(3), pages 429-438, March.
    19. Achim Wechsung & Paul Barton, 2014. "Global optimization of bounded factorable functions with discontinuities," Journal of Global Optimization, Springer, vol. 58(1), pages 1-30, January.
    20. Youssef M. Aboutaleb & Moshe Ben-Akiva & Patrick Jaillet, 2020. "Learning Structure in Nested Logit Models," Papers 2008.08048, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:4:d:10.1007_s10898-024-01381-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.