IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v57y2013i1p143-176.html
   My bibliography  Save this article

Improved relaxations for the parametric solutions of ODEs using differential inequalities

Author

Listed:
  • Joseph Scott
  • Paul Barton

Abstract

A new method is described for computing nonlinear convex and concave relaxations of the solutions of parametric ordinary differential equations (ODEs). Such relaxations enable deterministic global optimization algorithms to be applied to problems with ODEs embedded, which arise in a wide variety of engineering applications. The proposed method computes relaxations as the solutions of an auxiliary system of ODEs, and a method for automatically constructing and numerically solving appropriate auxiliary ODEs is presented. This approach is similar to two existing methods, which are analyzed and shown to have undesirable properties that are avoided by the new method. Two numerical examples demonstrate that these improvements lead to significantly tighter relaxations than previous methods. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • Joseph Scott & Paul Barton, 2013. "Improved relaxations for the parametric solutions of ODEs using differential inequalities," Journal of Global Optimization, Springer, vol. 57(1), pages 143-176, September.
  • Handle: RePEc:spr:jglopt:v:57:y:2013:i:1:p:143-176
    DOI: 10.1007/s10898-012-9909-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9909-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9909-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph Scott & Matthew Stuber & Paul Barton, 2011. "Generalized McCormick relaxations," Journal of Global Optimization, Springer, vol. 51(4), pages 569-606, December.
    2. A. B. Singer & P. I. Barton, 2004. "Global Solution of Optimization Problems with Parameter-Embedded Linear Dynamic Systems," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 613-646, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spencer D. Schaber & Joseph K. Scott & Paul I. Barton, 2019. "Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs," Journal of Global Optimization, Springer, vol. 73(1), pages 113-151, January.
    2. Matthew E. Wilhelm & Matthew D. Stuber, 2023. "Improved Convex and Concave Relaxations of Composite Bilinear Forms," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 174-204, April.
    3. Chrysoula D. Kappatou & Dominik Bongartz & Jaromił Najman & Susanne Sass & Alexander Mitsos, 2022. "Global dynamic optimization with Hammerstein–Wiener models embedded," Journal of Global Optimization, Springer, vol. 84(2), pages 321-347, October.
    4. Jason Ye & Joseph K. Scott, 2023. "Extended McCormick relaxation rules for handling empty arguments representing infeasibility," Journal of Global Optimization, Springer, vol. 87(1), pages 57-95, September.
    5. Boris Houska & Benoît Chachuat, 2014. "Branch-and-Lift Algorithm for Deterministic Global Optimization in Nonlinear Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 208-248, July.
    6. Matthew E. Wilhelm & Chenyu Wang & Matthew D. Stuber, 2023. "Convex and concave envelopes of artificial neural network activation functions for deterministic global optimization," Journal of Global Optimization, Springer, vol. 85(3), pages 569-594, March.
    7. Kamil A. Khan & Harry A. J. Watson & Paul I. Barton, 2017. "Differentiable McCormick relaxations," Journal of Global Optimization, Springer, vol. 67(4), pages 687-729, April.
    8. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    9. Kamil A. Khan & Paul I. Barton, 2014. "Generalized Derivatives for Solutions of Parametric Ordinary Differential Equations with Non-differentiable Right-Hand Sides," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 355-386, November.
    10. Ishan Bajaj & M. M. Faruque Hasan, 2020. "Global dynamic optimization using edge-concave underestimator," Journal of Global Optimization, Springer, vol. 77(3), pages 487-512, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Villanueva & Boris Houska & Benoît Chachuat, 2015. "Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs," Journal of Global Optimization, Springer, vol. 62(3), pages 575-613, July.
    2. A. Tsoukalas & A. Mitsos, 2014. "Multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 59(2), pages 633-662, July.
    3. Joseph K. Scott & Paul I. Barton, 2013. "Convex and Concave Relaxations for the Parametric Solutions of Semi-explicit Index-One Differential-Algebraic Equations," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 617-649, March.
    4. A. Skjäl & T. Westerlund & R. Misener & C. A. Floudas, 2012. "A Generalization of the Classical αBB Convex Underestimation via Diagonal and Nondiagonal Quadratic Terms," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 462-490, August.
    5. N. Kazazakis & C. S. Adjiman, 2018. "Arbitrarily tight $$\alpha $$ α BB underestimators of general non-linear functions over sub-optimal domains," Journal of Global Optimization, Springer, vol. 71(4), pages 815-844, August.
    6. Achim Wechsung & Spencer Schaber & Paul Barton, 2014. "The cluster problem revisited," Journal of Global Optimization, Springer, vol. 58(3), pages 429-438, March.
    7. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    8. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    9. Achim Wechsung & Paul Barton, 2014. "Global optimization of bounded factorable functions with discontinuities," Journal of Global Optimization, Springer, vol. 58(1), pages 1-30, January.
    10. Youssef M. Aboutaleb & Moshe Ben-Akiva & Patrick Jaillet, 2020. "Learning Structure in Nested Logit Models," Papers 2008.08048, arXiv.org.
    11. Chrysoula D. Kappatou & Dominik Bongartz & Jaromił Najman & Susanne Sass & Alexander Mitsos, 2022. "Global dynamic optimization with Hammerstein–Wiener models embedded," Journal of Global Optimization, Springer, vol. 84(2), pages 321-347, October.
    12. Achim Wechsung & Joseph Scott & Harry Watson & Paul Barton, 2015. "Reverse propagation of McCormick relaxations," Journal of Global Optimization, Springer, vol. 63(1), pages 1-36, September.
    13. Matthew E. Wilhelm & Chenyu Wang & Matthew D. Stuber, 2023. "Convex and concave envelopes of artificial neural network activation functions for deterministic global optimization," Journal of Global Optimization, Springer, vol. 85(3), pages 569-594, March.
    14. Jaromił Najman & Alexander Mitsos, 2019. "On tightness and anchoring of McCormick and other relaxations," Journal of Global Optimization, Springer, vol. 74(4), pages 677-703, August.
    15. Jason Ye & Joseph K. Scott, 2023. "Extended McCormick relaxation rules for handling empty arguments representing infeasibility," Journal of Global Optimization, Springer, vol. 87(1), pages 57-95, September.
    16. Joseph Scott & Matthew Stuber & Paul Barton, 2011. "Generalized McCormick relaxations," Journal of Global Optimization, Springer, vol. 51(4), pages 569-606, December.
    17. Marco Locatelli, 2020. "Convex envelope of bivariate cubic functions over rectangular regions," Journal of Global Optimization, Springer, vol. 76(1), pages 1-24, January.
    18. Spencer D. Schaber & Joseph K. Scott & Paul I. Barton, 2019. "Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs," Journal of Global Optimization, Springer, vol. 73(1), pages 113-151, January.
    19. Matthew E. Wilhelm & Matthew D. Stuber, 2023. "Improved Convex and Concave Relaxations of Composite Bilinear Forms," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 174-204, April.
    20. Jaromił Najman & Alexander Mitsos, 2016. "Convergence analysis of multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 66(4), pages 597-628, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:57:y:2013:i:1:p:143-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.