IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v123y2004i1d10.1023_bjota.0000043992.38554.c8.html
   My bibliography  Save this article

Lagrange Multiplier Conditions Characterizing the Optimal Solution Sets of Cone-Constrained Convex Programs

Author

Listed:
  • V. Jeyakumar

    (University of New South Wales)

  • G. M. Lee

    (Pukyong National University)

  • N. Dinh

    (Pedagogical Institute)

Abstract

Various characterizations of optimal solution sets of cone-constrained convex optimization problems are given. The results are expressed in terms of subgradients and Lagrange multipliers. We establish first that the Lagrangian function of a convex program is constant on the optimal solution set. This elementary property is then used to derive various simple Lagrange multiplier-based characterizations of the solution set. For a finite-dimensional convex program with inequality constraints, the characterizations illustrate that the active constraints with positive Lagrange multipliers at an optimal solution remain active at all optimal solutions of the program. The results are applied to derive corresponding Lagrange multiplier characterizations of the solution sets of semidefinite programs and fractional programs. Specific examples are given to illustrate the nature of the results.

Suggested Citation

  • V. Jeyakumar & G. M. Lee & N. Dinh, 2004. "Lagrange Multiplier Conditions Characterizing the Optimal Solution Sets of Cone-Constrained Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 123(1), pages 83-103, October.
  • Handle: RePEc:spr:joptap:v:123:y:2004:i:1:d:10.1023_b:jota.0000043992.38554.c8
    DOI: 10.1023/B:JOTA.0000043992.38554.c8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:JOTA.0000043992.38554.c8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:JOTA.0000043992.38554.c8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Deng, 1998. "Characterizations of the Nonemptiness and Compactness of Solution Sets in Convex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 123-131, January.
    2. A. Fischer & V. Jeyakumar & D. T. Luc, 2001. "Solution Point Characterizations and Convergence Analysis of a Descent Algorithm for Nonsmooth Continuous Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 493-513, September.
    3. V. Jeyakumar, 1997. "Asymptotic Dual Conditions Characterizing Optimality for Infinite Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 93(1), pages 153-165, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. X. M. Yang, 2009. "On Characterizing the Solution Sets of Pseudoinvex Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 537-542, March.
    2. H. Luo & X. Huang & J. Peng, 2012. "Generalized weak sharp minima in cone-constrained convex optimization with applications," Computational Optimization and Applications, Springer, vol. 53(3), pages 807-821, December.
    3. Joydeep Dutta, 2005. "Generalized derivatives and nonsmooth optimization, a finite dimensional tour," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 185-279, December.
    4. D. H. Fang & Y. Zhang, 2018. "Extended Farkas’s Lemmas and Strong Dualities for Conic Programming Involving Composite Functions," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 351-376, February.
    5. V. Jeyakumar & G. M. Lee & G. Li, 2015. "Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 407-435, February.
    6. Jeyakumar, V. & Lee, G.M. & Dinh, N., 2006. "Characterizations of solution sets of convex vector minimization problems," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1380-1395, November.
    7. N. V. Tuyen & C.-F. Wen & T. Q. Son, 2022. "An approach to characterizing $$\epsilon $$ ϵ -solution sets of convex programs," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 249-269, July.
    8. Vsevolod I. Ivanov, 2013. "Optimality Conditions and Characterizations of the Solution Sets in Generalized Convex Problems and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 65-84, July.
    9. S. Deng, 2009. "Characterizations of the Nonemptiness and Boundedness of Weakly Efficient Solution Sets of Convex Vector Optimization Problems in Real Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 1-7, January.
    10. Kin Keung Lai & Shashi Kant Mishra & Sanjeev Kumar Singh & Mohd Hassan, 2022. "Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    11. S. K. Mishra & B. B. Upadhyay & Le Thi Hoai An, 2014. "Lagrange Multiplier Characterizations of Solution Sets of Constrained Nonsmooth Pseudolinear Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 763-777, March.
    12. Vsevolod I. Ivanov, 2019. "Characterizations of Solution Sets of Differentiable Quasiconvex Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 144-162, April.
    13. Satoshi Suzuki & Daishi Kuroiwa, 2015. "Characterizations of the solution set for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 62(3), pages 431-441, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeyakumar, V. & Lee, G.M. & Dinh, N., 2006. "Characterizations of solution sets of convex vector minimization problems," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1380-1395, November.
    2. César Gutiérrez & Rubén López & Vicente Novo, 2014. "Existence and Boundedness of Solutions in Infinite-Dimensional Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 515-547, August.
    3. M. A. Tawhid & J. L. Goffin, 2008. "On Minimizing Some Merit Functions for Nonlinear Complementarity Problems under H-Differentiability," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 127-140, October.
    4. Shaojian Qu & Mark Goh & Soon-Yi Wu & Robert Souza, 2014. "Multiobjective DC programs with infinite convex constraints," Journal of Global Optimization, Springer, vol. 59(1), pages 41-58, May.
    5. César Gutiérrez & Rubén López, 2020. "On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 880-902, June.
    6. Liguo Jiao & Jae Hyoung Lee, 2018. "Approximate Optimality and Approximate Duality for Quasi Approximate Solutions in Robust Convex Semidefinite Programs," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 74-93, January.
    7. Li-Wen Zhou & Nan-Jing Huang, 2013. "Existence of Solutions for Vector Optimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 44-53, April.
    8. S. Deng, 2010. "Boundedness and Nonemptiness of the Efficient Solution Sets in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 29-42, January.
    9. Xiangkai Sun & Hongyong Fu & Jing Zeng, 2018. "Robust Approximate Optimality Conditions for Uncertain Nonsmooth Optimization with Infinite Number of Constraints," Mathematics, MDPI, vol. 7(1), pages 1-14, December.
    10. Yarui Duan & Liguo Jiao & Pengcheng Wu & Yuying Zhou, 2022. "Existence of Pareto Solutions for Vector Polynomial Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 148-171, October.
    11. LA TORRE Davide & CUSANO Claudio & FINI Matteo, 2004. "Characterizations of convex vector functions and optimization," Departmental Working Papers 2004-05, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    12. X. Huang & J. Yao, 2013. "Characterizations of the nonemptiness and compactness for solution sets of convex set-valued optimization problems," Journal of Global Optimization, Springer, vol. 55(3), pages 611-626, March.
    13. X. X. Huang & Y. P. Fang & X. Q. Yang, 2014. "Characterizing the Nonemptiness and Compactness of the Solution Set of a Vector Variational Inequality by Scalarization," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 548-558, August.
    14. Nicolas Hadjisavvas & Felipe Lara & Juan Enrique Martínez-Legaz, 2019. "A Quasiconvex Asymptotic Function with Applications in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 170-186, January.
    15. N. J. Huang & J. Li & S. Y. Wu, 2009. "Optimality Conditions for Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 323-342, August.
    16. S. Deng, 2009. "Characterizations of the Nonemptiness and Boundedness of Weakly Efficient Solution Sets of Convex Vector Optimization Problems in Real Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 1-7, January.
    17. Pin-Bo Chen & Peng Zhang & Xide Zhu & Gui-Hua Lin, 2020. "Modified Jacobian smoothing method for nonsmooth complementarity problems," Computational Optimization and Applications, Springer, vol. 75(1), pages 207-235, January.
    18. Nithirat Sisarat & Rabian Wangkeeree & Tamaki Tanaka, 2020. "Sequential characterizations of approximate solutions in convex vector optimization problems with set-valued maps," Journal of Global Optimization, Springer, vol. 77(2), pages 273-287, June.
    19. S. Deng, 1998. "On Efficient Solutions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 201-209, January.
    20. F. Flores-Bazán & C. Vera, 2006. "Characterization of the Nonemptiness and Compactness of Solution Sets in Convex and Nonconvex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 185-207, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:123:y:2004:i:1:d:10.1023_b:jota.0000043992.38554.c8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.