IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v77y2020i2d10.1007_s10898-019-00864-0.html
   My bibliography  Save this article

Sequential characterizations of approximate solutions in convex vector optimization problems with set-valued maps

Author

Listed:
  • Nithirat Sisarat

    (Naresuan University)

  • Rabian Wangkeeree

    (Naresuan University
    Naresuan University)

  • Tamaki Tanaka

    (Niigata University)

Abstract

This paper deals with a convex vector optimization problem with set-valued maps. In the absence of constraint qualifications, it provides, by the scalarization theorem, sequential Lagrange multiplier conditions characterizing approximate weak Pareto optimal solutions for the problem in terms of the approximate subdifferentials of the marginal function associated with corresponding set-valued maps. The paper shows also that this result yields the approximate Lagrange multiplier condition for the problem under a new constraint qualification which is weaker than the Slater-type constraint qualification. Illustrative examples are also provided to discuss the significance of the sequential conditions.

Suggested Citation

  • Nithirat Sisarat & Rabian Wangkeeree & Tamaki Tanaka, 2020. "Sequential characterizations of approximate solutions in convex vector optimization problems with set-valued maps," Journal of Global Optimization, Springer, vol. 77(2), pages 273-287, June.
  • Handle: RePEc:spr:jglopt:v:77:y:2020:i:2:d:10.1007_s10898-019-00864-0
    DOI: 10.1007/s10898-019-00864-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00864-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00864-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joydeep Dutta & Kalyanmoy Deb & Rupesh Tulshyan & Ramnik Arora, 2013. "Approximate KKT points and a proximity measure for termination," Journal of Global Optimization, Springer, vol. 56(4), pages 1463-1499, August.
    2. Taiyong Li & Yihong Xu & Chuanxi Zhu, 2007. "∊-Strictly Efficient Solutions Of Vector Optimization Problems With Set-Valued Maps," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(06), pages 841-854.
    3. X. Huang & J. Yao, 2013. "Characterizations of the nonemptiness and compactness for solution sets of convex set-valued optimization problems," Journal of Global Optimization, Springer, vol. 55(3), pages 611-626, March.
    4. J.M. Martínez & B.F. Svaiter, 2003. "A Practical Optimality Condition Without Constraint Qualifications for Nonlinear Programming," Journal of Optimization Theory and Applications, Springer, vol. 118(1), pages 117-133, July.
    5. J. Baier & J. Jahn, 1999. "On Subdifferentials of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 100(1), pages 233-240, January.
    6. Johannes Jahn & Rüdiger Rauh, 1997. "Contingent epiderivatives and set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(2), pages 193-211, June.
    7. V. Jeyakumar, 1997. "Asymptotic Dual Conditions Characterizing Optimality for Infinite Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 93(1), pages 153-165, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Q. Anh & T. Q. Duy & D. V. Hien, 2020. "Stability of efficient solutions to set optimization problems," Journal of Global Optimization, Springer, vol. 78(3), pages 563-580, November.
    2. Mohamed Laghdir & El Mahjoub. Echchaabaoui, 2023. "Sequential Pareto Subdifferential Sum Rule for Convex Set-Valued Mappings and Applications," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1226-1245, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liguo Jiao & Jae Hyoung Lee, 2018. "Approximate Optimality and Approximate Duality for Quasi Approximate Solutions in Robust Convex Semidefinite Programs," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 74-93, January.
    2. Elvira Hernández & Luis Rodríguez-Marín, 2011. "Weak and Strong Subgradients of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 352-365, May.
    3. Nithirat Sisarat & Rabian Wangkeeree & Gue Myung Lee, 2020. "On Set Containment Characterizations for Sets Described by Set-Valued Maps with Applications," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 824-841, March.
    4. Roberto Andreani & José Mario Martínez & Alberto Ramos & Paulo J. S. Silva, 2018. "Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 693-717, August.
    5. L. F. Bueno & G. Haeser & J. M. Martínez, 2015. "A Flexible Inexact-Restoration Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 188-208, April.
    6. R. Gárciga Otero & B. F. Svaiter, 2008. "New Condition Characterizing the Solutions of Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 89-98, April.
    7. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    8. P. Q. Khanh & N. D. Tuan, 2008. "Higher-Order Variational Sets and Higher-Order Optimality Conditions for Proper Efficiency in Set-Valued Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 243-261, November.
    9. Shaojian Qu & Mark Goh & Soon-Yi Wu & Robert Souza, 2014. "Multiobjective DC programs with infinite convex constraints," Journal of Global Optimization, Springer, vol. 59(1), pages 41-58, May.
    10. N. L. H. Anh & P. Q. Khanh, 2013. "Variational Sets of Perturbation Maps and Applications to Sensitivity Analysis for Constrained Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 363-384, August.
    11. S. Zhu & S. Li & K. Teo, 2014. "Second-order Karush–Kuhn–Tucker optimality conditions for set-valued optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 673-692, April.
    12. Xiang-Kai Sun & Sheng-Jie Li, 2014. "Generalized second-order contingent epiderivatives in parametric vector optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 351-363, February.
    13. X. L. Guo & S. J. Li, 2014. "Optimality Conditions for Vector Optimization Problems with Difference of Convex Maps," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 821-844, September.
    14. Nguyen Thi Toan & Le Quang Thuy, 2023. "S-Derivative of the Extremum Multifunction to a Multi-objective Parametric Discrete Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 240-265, January.
    15. A. Pascoletti & P. Serafini, 2007. "Differential Conditions for Constrained Nonlinear Programming via Pareto Optimization," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 399-411, September.
    16. Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.
    17. P. Kesarwani & P. K. Shukla & J. Dutta & K. Deb, 2022. "Approximations for Pareto and Proper Pareto solutions and their KKT conditions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 123-148, August.
    18. Renan W. Prado & Sandra A. Santos & Lucas E. A. Simões, 2023. "On the Fulfillment of the Complementary Approximate Karush–Kuhn–Tucker Conditions and Algorithmic Applications," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 705-736, May.
    19. Giovanni Crespi & Ivan Ginchev & Matteo Rocca, 2006. "First-order optimality conditions in set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 87-106, February.
    20. Tran Van Su, 2023. "Optimality and duality for nonsmooth mathematical programming problems with equilibrium constraints," Journal of Global Optimization, Springer, vol. 85(3), pages 663-685, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:77:y:2020:i:2:d:10.1007_s10898-019-00864-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.