IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v55y2013i3p611-626.html
   My bibliography  Save this article

Characterizations of the nonemptiness and compactness for solution sets of convex set-valued optimization problems

Author

Listed:
  • X. Huang
  • J. Yao

Abstract

In this paper, we first derive several characterizations of the nonemptiness and compactness for the solution set of a convex scalar set-valued optimization problem (with or without cone constraints) in which the decision space is finite-dimensional. The characterizations are expressed in terms of the coercivity of some scalar set-valued maps and the well-posedness of the set-valued optimization problem, respectively. Then we investigate characterizations of the nonemptiness and compactness for the weakly efficient solution set of a convex vector set-valued optimization problem (with or without cone constraints) in which the objective space is a normed space ordered by a nontrivial, closed and convex cone with nonempty interior and the decision space is finite-dimensional. We establish that the nonemptiness and compactness for the weakly efficient solution set of a convex vector set-valued optimization problem (with or without cone constraints) can be exactly characterized as those of a family of linearly scalarized convex set-valued optimization problems and the well-posedness of the original problem. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • X. Huang & J. Yao, 2013. "Characterizations of the nonemptiness and compactness for solution sets of convex set-valued optimization problems," Journal of Global Optimization, Springer, vol. 55(3), pages 611-626, March.
  • Handle: RePEc:spr:jglopt:v:55:y:2013:i:3:p:611-626
    DOI: 10.1007/s10898-012-9846-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9846-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9846-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X. X. Huang & X. Q. Yang & K. L. Teo, 2004. "Characterizing Nonemptiness and Compactness of the Solution Set of a Convex Vector Optimization Problem with Cone Constraints and Applications," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 391-407, November.
    2. A. Auslender & R. Cominetti & M. Haddou, 1997. "Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 43-62, February.
    3. S. Deng, 1998. "Characterizations of the Nonemptiness and Compactness of Solution Sets in Convex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 123-131, January.
    4. F. Flores-Bazán & C. Vera, 2006. "Characterization of the Nonemptiness and Compactness of Solution Sets in Convex and Nonconvex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 185-207, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nithirat Sisarat & Rabian Wangkeeree & Tamaki Tanaka, 2020. "Sequential characterizations of approximate solutions in convex vector optimization problems with set-valued maps," Journal of Global Optimization, Springer, vol. 77(2), pages 273-287, June.
    2. Nithirat Sisarat & Rabian Wangkeeree & Gue Myung Lee, 2020. "On Set Containment Characterizations for Sets Described by Set-Valued Maps with Applications," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 824-841, March.
    3. M. Oveisiha & J. Zafarani, 2014. "On Characterization of Solution Sets of Set-Valued Pseudoinvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 387-398, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Gutiérrez & Rubén López & Vicente Novo, 2014. "Existence and Boundedness of Solutions in Infinite-Dimensional Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 515-547, August.
    2. César Gutiérrez & Rubén López, 2020. "On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 880-902, June.
    3. S. Deng, 2010. "Boundedness and Nonemptiness of the Efficient Solution Sets in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 29-42, January.
    4. Yarui Duan & Liguo Jiao & Pengcheng Wu & Yuying Zhou, 2022. "Existence of Pareto Solutions for Vector Polynomial Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 148-171, October.
    5. S. Deng, 2009. "Characterizations of the Nonemptiness and Boundedness of Weakly Efficient Solution Sets of Convex Vector Optimization Problems in Real Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 1-7, January.
    6. Jiang-hua Fan & Yan Jing & Ren-you Zhong, 2015. "Nonemptiness and boundedness of solution sets for vector variational inequalities via topological method," Journal of Global Optimization, Springer, vol. 63(1), pages 181-193, September.
    7. X. X. Huang & X. Q. Yang & K. L. Teo, 2004. "Characterizing Nonemptiness and Compactness of the Solution Set of a Convex Vector Optimization Problem with Cone Constraints and Applications," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 391-407, November.
    8. Ovidiu Bagdasar & Nicolae Popovici, 2018. "Unifying local–global type properties in vector optimization," Journal of Global Optimization, Springer, vol. 72(2), pages 155-179, October.
    9. Nguyen Xuan Hai & Nguyen Hong Quan & Vo Viet Tri, 2023. "Some saddle-point theorems for vector-valued functions," Journal of Global Optimization, Springer, vol. 86(1), pages 141-161, May.
    10. Luis M. Briceño-Arias & Cristóbal Vivar-Vargas, 2024. "Enhanced Computation of the Proximity Operator for Perspective Functions," Journal of Optimization Theory and Applications, Springer, vol. 200(3), pages 1078-1099, March.
    11. Vu, Duc Thach Son & Ben Gharbia, Ibtihel & Haddou, Mounir & Tran, Quang Huy, 2021. "A new approach for solving nonlinear algebraic systems with complementarity conditions. Application to compositional multiphase equilibrium problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1243-1274.
    12. Alfred Auslender & Miguel A. Goberna & Marco A. López, 2009. "Penalty and Smoothing Methods for Convex Semi-Infinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 303-319, May.
    13. Héctor Ramírez & David Sossa, 2017. "On the Central Paths in Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 649-668, February.
    14. Frank Plastria, 2020. "On the Structure of the Weakly Efficient Set for Quasiconvex Vector Minimization," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 547-564, February.
    15. Maurizio Chicco & Anna Rossi, 2015. "Existence of Optimal Points Via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 487-501, November.
    16. Cominetti, Roberto & Dose, Valerio & Scarsini, Marco, 2024. "Monotonicity of equilibria in nonatomic congestion games," European Journal of Operational Research, Elsevier, vol. 316(2), pages 754-766.
    17. Li-Wen Zhou & Nan-Jing Huang, 2013. "Existence of Solutions for Vector Optimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 44-53, April.
    18. Felipe Alvarez & Miguel Carrasco & Thierry Champion, 2012. "Dual Convergence for Penalty Algorithms in Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 388-407, May.
    19. H. Luo & X. Huang & J. Peng, 2012. "Generalized weak sharp minima in cone-constrained convex optimization with applications," Computational Optimization and Applications, Springer, vol. 53(3), pages 807-821, December.
    20. Felipe Alvarez & Miguel Carrasco & Karine Pichard, 2005. "Convergence of a Hybrid Projection-Proximal Point Algorithm Coupled with Approximation Methods in Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 966-984, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:55:y:2013:i:3:p:611-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.