IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v162y2014i2d10.1007_s10957-014-0541-7.html
   My bibliography  Save this article

Existence and Boundedness of Solutions in Infinite-Dimensional Vector Optimization Problems

Author

Listed:
  • César Gutiérrez

    (Universidad de Valladolid)

  • Rubén López

    (Universidad Católica de la Ssma. Concepción)

  • Vicente Novo

    (Universidad Nacional de Educación a Distancia)

Abstract

This work focuses on the nonemptiness and boundedness of the sets of efficient and weak efficient solutions of a vector optimization problem, where the decision space is a normed space and the image space is a locally convex Hausdorff topological linear space. By studying certain boundedness and coercivity concepts of vector-valued functions and via an asymptotic analysis, we extend to this kind of problems some well-known existence and boundedness results for efficient and weak efficient solutions of multiobjective optimization problems with Pareto or polyhedral orderings. Some of these results are proved under weaker assumptions.

Suggested Citation

  • César Gutiérrez & Rubén López & Vicente Novo, 2014. "Existence and Boundedness of Solutions in Infinite-Dimensional Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 515-547, August.
  • Handle: RePEc:spr:joptap:v:162:y:2014:i:2:d:10.1007_s10957-014-0541-7
    DOI: 10.1007/s10957-014-0541-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0541-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0541-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Deng, 1998. "On Efficient Solutions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 201-209, January.
    2. X. X. Huang & X. Q. Yang & K. L. Teo, 2004. "Characterizing Nonemptiness and Compactness of the Solution Set of a Convex Vector Optimization Problem with Cone Constraints and Applications," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 391-407, November.
    3. J. H. Fan & X. G. Wang, 2009. "Solvability of Generalized Variational Inequality Problems for Unbounded Sets in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 143(1), pages 59-74, October.
    4. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(4), pages 1007-1017, August.
    5. S. Deng, 1998. "Characterizations of the Nonemptiness and Compactness of Solution Sets in Convex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 123-131, January.
    6. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1461-1465, December.
    7. S. Deng, 2010. "Boundedness and Nonemptiness of the Efficient Solution Sets in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 29-42, January.
    8. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(1), pages 193-194, February.
    9. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1273-1289, October.
    10. F. Flores-Bazán & C. Vera, 2006. "Characterization of the Nonemptiness and Compactness of Solution Sets in Convex and Nonconvex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 185-207, August.
    11. S. Deng, 2009. "Characterizations of the Nonemptiness and Boundedness of Weakly Efficient Solution Sets of Convex Vector Optimization Problems in Real Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 1-7, January.
    12. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(3), pages 819-821, June.
    13. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(2), pages 541-545, April.
    14. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, December.
    15. Bienvenido Jiménez & Vicente Novo & Miguel Sama, 2013. "An extension of the Basic Constraint Qualification to nonconvex vector optimization problems," Journal of Global Optimization, Springer, vol. 56(4), pages 1755-1771, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yarui Duan & Liguo Jiao & Pengcheng Wu & Yuying Zhou, 2022. "Existence of Pareto Solutions for Vector Polynomial Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 148-171, October.
    2. César Gutiérrez & Rubén López, 2020. "On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 880-902, June.
    3. César Gutiérrez & Lidia Huerga & Vicente Novo & Lionel Thibault, 2015. "Chain Rules for a Proper $$\varepsilon $$ ε -Subdifferential of Vector Mappings," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 502-526, November.
    4. F. Fakhar & H. R. Hajisharifi & Z. Soltani, 2023. "Noncoercive and noncontinuous equilibrium problems: existence theorem in infinite-dimensional spaces," Journal of Global Optimization, Springer, vol. 86(4), pages 989-1003, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Gutiérrez & Rubén López, 2020. "On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 880-902, June.
    2. X. Huang & J. Yao, 2013. "Characterizations of the nonemptiness and compactness for solution sets of convex set-valued optimization problems," Journal of Global Optimization, Springer, vol. 55(3), pages 611-626, March.
    3. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    4. Bruno Bouchard & Boualem Djehiche & Idris Kharroubi, 2020. "Quenched Mass Transport of Particles Toward a Target," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 345-374, August.
    5. Zhe Chen, 2013. "Asymptotic analysis in convex composite multiobjective optimization problems," Journal of Global Optimization, Springer, vol. 55(3), pages 507-520, March.
    6. Maurizio Chicco & Anna Rossi, 2015. "Existence of Optimal Points Via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 487-501, November.
    7. Rubén López, 2013. "Variational convergence for vector-valued functions and its applications to convex multiobjective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 1-34, August.
    8. Jeyakumar, V. & Lee, G.M. & Dinh, N., 2006. "Characterizations of solution sets of convex vector minimization problems," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1380-1395, November.
    9. Fabián Flores-Bazán & Elvira Hernández, 2013. "Optimality conditions for a unified vector optimization problem with not necessarily preordering relations," Journal of Global Optimization, Springer, vol. 56(2), pages 299-315, June.
    10. N. J. Huang & J. Li & S. Y. Wu, 2009. "Optimality Conditions for Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 323-342, August.
    11. F. Flores-Bazán & C. Vera, 2006. "Characterization of the Nonemptiness and Compactness of Solution Sets in Convex and Nonconvex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 185-207, August.
    12. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    13. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    14. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    15. Christophe Loussouarn & Carine Franc & Yann Videau & Julien Mousquès, 2021. "Can General Practitioners Be More Productive? The Impact of Teamwork and Cooperation with Nurses on GP Activities," Health Economics, John Wiley & Sons, Ltd., vol. 30(3), pages 680-698, March.
    16. Tschakert, Petra, 2016. "Shifting Discourses of Vilification and the Taming of Unruly Mining Landscapes in Ghana," World Development, Elsevier, vol. 86(C), pages 123-132.
    17. María-Consuelo Casabán & Rafael Company & Lucas Jódar, 2020. "Non-Gaussian Quadrature Integral Transform Solution of Parabolic Models with a Finite Degree of Randomness," Mathematics, MDPI, vol. 8(7), pages 1-16, July.
    18. Isabelle Boutron & Peter John & David J. Torgerson, 2010. "Reporting Methodological Items in Randomized Experiments in Political Science," The ANNALS of the American Academy of Political and Social Science, , vol. 628(1), pages 112-131, March.
    19. Ben Slimane, Faten & Padilla Angulo, Laura, 2019. "Strategic change and corporate governance: Evidence from the stock exchange industry," Journal of Business Research, Elsevier, vol. 103(C), pages 206-218.
    20. Bossert, Walter & Derks, Jean & Peters, Hans, 2005. "Efficiency in uncertain cooperative games," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 12-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:162:y:2014:i:2:d:10.1007_s10957-014-0541-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.