IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v139y2008i1d10.1007_s10957-008-9409-z.html
   My bibliography  Save this article

On Minimizing Some Merit Functions for Nonlinear Complementarity Problems under H-Differentiability

Author

Listed:
  • M. A. Tawhid

    (Thompson Rivers University)

  • J. L. Goffin

    (McGill University)

Abstract

In this paper, we describe the H-differentials of some well known NCP functions and their merit functions. We show how, under appropriate conditions on an H-differential of f, minimizing a merit function corresponding to f leads to a solution of the nonlinear complementarity problem. Our results give a unified treatment of such results for C 1-functions, semismooth-functions, and locally Lipschitzian functions. Illustrations are given to show the usefulness of our results. We present also a result on the global convergence of a derivative-free descent algorithm for solving the nonlinear complementarity problem.

Suggested Citation

  • M. A. Tawhid & J. L. Goffin, 2008. "On Minimizing Some Merit Functions for Nonlinear Complementarity Problems under H-Differentiability," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 127-140, October.
  • Handle: RePEc:spr:joptap:v:139:y:2008:i:1:d:10.1007_s10957-008-9409-z
    DOI: 10.1007/s10957-008-9409-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9409-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9409-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    2. Yoon Song & M. Seetharama Gowda & G. Ravindran, 2000. "On Characterizations of P - and P 0 -Properties in Nonsmooth Functions," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 400-408, August.
    3. A. Fischer, 1998. "New Constrained Optimization Reformulation of Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 97(1), pages 105-117, April.
    4. A. Fischer & V. Jeyakumar & D. T. Luc, 2001. "Solution Point Characterizations and Convergence Analysis of a Descent Algorithm for Nonsmooth Continuous Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 493-513, September.
    5. F. Facchinei & C. Kanzow, 1997. "On Unconstrained and Constrained Stationary Points of the Implicit Lagrangian," Journal of Optimization Theory and Applications, Springer, vol. 92(1), pages 99-115, January.
    6. M.A. Tawhid, 2002. "On the Local Uniqueness of Solutions of Variational Inequalities Under H-Differentiability," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 149-164, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Qi & X. J. Tong & D. H. Li, 2004. "Active-Set Projected Trust-Region Algorithm for Box-Constrained Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 120(3), pages 601-625, March.
    2. Dong-Hui Li & Liqun Qi & Judy Tam & Soon-Yi Wu, 2004. "A Smoothing Newton Method for Semi-Infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 169-194, November.
    3. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    4. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    5. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    6. Ralf Münnich & Ekkehard Sachs & Matthias Wagner, 2012. "Calibration of estimator-weights via semismooth Newton method," Journal of Global Optimization, Springer, vol. 52(3), pages 471-485, March.
    7. Boshi Tian & Xiaoxing Chang, 2025. "A reweighted $$\ell _1$$ ℓ 1 -penalty method for nonlinear complementarity problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 101(1), pages 95-110, February.
    8. D.T. Luc & M.A. Noor, 2003. "Local Uniqueness of Solutions of General Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 117(1), pages 103-119, April.
    9. Y. Gao, 2006. "Newton Methods for Quasidifferentiable Equations and Their Convergence," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 417-428, December.
    10. Sanja Rapajić & Zoltan Papp, 2017. "A nonmonotone Jacobian smoothing inexact Newton method for NCP," Computational Optimization and Applications, Springer, vol. 66(3), pages 507-532, April.
    11. J. Han & D. Sun, 1997. "Newton and Quasi-Newton Methods for Normal Maps with Polyhedral Sets," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 659-676, September.
    12. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    13. C. Kanzow & H. Qi & L. Qi, 2003. "On the Minimum Norm Solution of Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 333-345, February.
    14. Bastian Pötzl & Anton Schiela & Patrick Jaap, 2024. "Inexact proximal Newton methods in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 87(1), pages 1-37, January.
    15. D. H. Li & N. Yamashita & M. Fukushima, 2001. "Nonsmooth Equation Based BFGS Method for Solving KKT Systems in Mathematical Programming," Journal of Optimization Theory and Applications, Springer, vol. 109(1), pages 123-167, April.
    16. Christian Kanzow & Alexandra Schwartz & Felix Weiß, 2025. "The sparse(st) optimization problem: reformulations, optimality, stationarity, and numerical results," Computational Optimization and Applications, Springer, vol. 90(1), pages 77-112, January.
    17. Kenji Ueda & Nobuo Yamashita, 2012. "Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 450-467, February.
    18. Jingyong Tang & Jinchuan Zhou, 2021. "A smoothing quasi-Newton method for solving general second-order cone complementarity problems," Journal of Global Optimization, Springer, vol. 80(2), pages 415-438, June.
    19. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    20. Zhengyong Zhou & Yunchan Peng, 2019. "The locally Chen–Harker–Kanzow–Smale smoothing functions for mixed complementarity problems," Journal of Global Optimization, Springer, vol. 74(1), pages 169-193, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:139:y:2008:i:1:d:10.1007_s10957-008-9409-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.