IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i3d10.1007_s10845-024-02327-0.html
   My bibliography  Save this article

Simulation-based metaheuristic optimization algorithm for material handling

Author

Listed:
  • Carolina Saavedra Sueldo

    (UNCPBA-CICPBA-CONICET
    Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA))

  • Ivo Perez Colo

    (UNCPBA-CICPBA-CONICET
    Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA))

  • Mariano Paula

    (UNCPBA-CICPBA-CONICET
    Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA))

  • Sebastián A. Villar

    (UNCPBA-CICPBA-CONICET
    Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA))

  • Gerardo G. Acosta

    (UNCPBA-CICPBA-CONICET
    Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA))

Abstract

Modern technologies and the emergent Industry 4.0 paradigm have empowered the emergence of flexible production systems suitable to cope with custom product demands, typical in this era of competitive marketplaces. However, production flexibility claims periodic changes in the setup of production facilities. The level of flexibility of a production process increases as the reconfiguration capacity of its facilities increases. Nevertheless, doing that efficiently requires accurate coordination between productive resources, task planning, and decision-making systems aiming to maximize value for the client, minimizing non-added-value production tasks, and continuous process improvement. In a manufacturing system, material handling within manufacturing facilities is one of the major non-value-added tasks strongly affected by changes in plant floor layouts and demands for producing customized products. This work proposes a metaheuristic simulation-based optimization methodology to address the material handling problem in dynamic environments. Our proposed approach integrates optimization, discrete event simulation, and artificial intelligence methods. Our proposed optimization algorithm is mainly based on the ideas of the novel population-based optimization algorithm called Q-learning embedded Sine Cosine Algorithm, inspired by the Sine Cosine Algorithm. Unlike those, our proposed approach can deal with discrete optimization problems. It includes in its formulation a reinforcement learning embedded algorithm for the self-learning of the parameters of the metaheuristic optimization algorithm, and discrete event simulation is used for simulating the shop floor operations. The performance of the proposed approach is evaluated through an exhaustive analysis of simple to complex cases. In addition, a comparison is made with other comparable optimization methodologies.

Suggested Citation

  • Carolina Saavedra Sueldo & Ivo Perez Colo & Mariano Paula & Sebastián A. Villar & Gerardo G. Acosta, 2025. "Simulation-based metaheuristic optimization algorithm for material handling," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1689-1709, March.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02327-0
    DOI: 10.1007/s10845-024-02327-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02327-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02327-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed Abdel-Baset & Yongquan Zhou & Ibrahim Hezam, 2019. "Use of a sine cosine algorithm combined with Simpson method for numerical integration," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 14(3), pages 307-318.
    2. Benitez, Guilherme Brittes & Ghezzi, Antonio & Frank, Alejandro G., 2023. "When technologies become Industry 4.0 platforms: Defining the role of digital technologies through a boundary-spanning perspective," International Journal of Production Economics, Elsevier, vol. 260(C).
    3. Hassan Alimam & Giovanni Mazzuto & Marco Ortenzi & Filippo Emanuele Ciarapica & Maurizio Bevilacqua, 2023. "Intelligent Retrofitting Paradigm for Conventional Machines towards the Digital Triplet Hierarchy," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    4. Alkhoraif, Abdullah & Rashid, Hamad & McLaughlin, Patrick, 2019. "Lean implementation in small and medium enterprises: Literature review," Operations Research Perspectives, Elsevier, vol. 6(C).
    5. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    6. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Meyer, Patrick & Karimi-Mamaghan, Amir Mohammad & Talbi, El-Ghazali, 2022. "Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art," European Journal of Operational Research, Elsevier, vol. 296(2), pages 393-422.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Oliveira, Raphael Mazzine Barbosa & Sörensen, Kenneth & Martens, David, 2024. "A model-agnostic and data-independent tabu search algorithm to generate counterfactuals for tabular, image, and text data," European Journal of Operational Research, Elsevier, vol. 317(2), pages 286-302.
    2. Fang, Chao & Han, Zonglei & Wang, Wei & Zio, Enrico, 2023. "Routing UAVs in landslides Monitoring: A neural network heuristic for team orienteering with mandatory visits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    3. Andreas Dellnitz & Andreas Kleine & Madjid Tavana, 2024. "An integrated data envelopment analysis and regression tree method for new product price estimation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1189-1211, December.
    4. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    5. Falah Abu & Hamed Gholami & Norhayati Zakuan & Muhamad Zameri Mat Saman & Dalia Streimikiene & Justas Streimikis, 2020. "The Influence of Contextual Factors on the Implementation of Lean Practices: An Analysis of Furniture Industries," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 22(55), pages 867-867, August.
    6. Miguel Angel Ortíz-Barrios & Dayana Milena Coba-Blanco & Juan-José Alfaro-Saíz & Daniela Stand-González, 2021. "Process Improvement Approaches for Increasing the Response of Emergency Departments against the COVID-19 Pandemic: A Systematic Review," IJERPH, MDPI, vol. 18(16), pages 1-31, August.
    7. Shahsavar, Aria & Sadeghi, J. Kiarash & Shockley, Jeff & Ojha, Divesh, 2021. "On the relationship between lean scheduling and economic performance in shipbuilding: A proposed model and comparative evaluation," International Journal of Production Economics, Elsevier, vol. 239(C).
    8. Philippe Racette & Frédéric Quesnel & Andrea Lodi & François Soumis, 2024. "Gaining insight into crew rostering instances through ML-based sequential assignment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 537-578, October.
    9. Sobrie, Léon & Verschelde, Marijn & Roets, Bart, 2024. "Explainable real-time predictive analytics on employee workload in digital railway control rooms," European Journal of Operational Research, Elsevier, vol. 317(2), pages 437-448.
    10. Franco, Cintia Wilke & Benitez, Guilherme Brittes & Sousa, Paulo Renato de & Kliemann Neto, Francisco José & Frank, Alejandro G., 2024. "Managing resources for digital transformation in supply chain integration: The role of hybrid governance structures," International Journal of Production Economics, Elsevier, vol. 278(C).
    11. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    12. Tingting Li & Wangtu Xu, 2024. "Reliable multiple allocation hub location problem under disruptions," Flexible Services and Manufacturing Journal, Springer, vol. 36(4), pages 1503-1529, December.
    13. Bootaki, Behrang & Zhang, Guoqing, 2024. "A location-production-routing problem for distributed manufacturing platforms: A neural genetic algorithm solution methodology," International Journal of Production Economics, Elsevier, vol. 275(C).
    14. Camur, Mustafa C. & Sharkey, Thomas C. & Vogiatzis, Chrysafis, 2023. "The stochastic pseudo-star degree centrality problem," European Journal of Operational Research, Elsevier, vol. 308(2), pages 525-539.
    15. Mohammadi, Mehrdad & Dehghan, Milad & Pirayesh, Amir & Dolgui, Alexandre, 2022. "Bi‐objective optimization of a stochastic resilient vaccine distribution network in the context of the COVID‐19 pandemic," Omega, Elsevier, vol. 113(C).
    16. Benati, Stefano & Ponce, Diego & Puerto, Justo & Rodríguez-Chía, Antonio M., 2022. "A branch-and-price procedure for clustering data that are graph connected," European Journal of Operational Research, Elsevier, vol. 297(3), pages 817-830.
    17. Eduardo Guzman & Beatriz Andres & Raul Poler, 2022. "A Decision-Making Tool for Algorithm Selection Based on a Fuzzy TOPSIS Approach to Solve Replenishment, Production and Distribution Planning Problems," Mathematics, MDPI, vol. 10(9), pages 1-28, May.
    18. Akhtar, Pervaiz & Ghouri, Arsalan Mujahid & Ashraf, Aniqa & Lim, Jia Jia & Khan, Naveed R & Ma, Shuang, 2024. "Smart product platforming powered by AI and generative AI: Personalization for the circular economy," International Journal of Production Economics, Elsevier, vol. 273(C).
    19. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    20. Fajemisin, Adejuyigbe O. & Maragno, Donato & den Hertog, Dick, 2024. "Optimization with constraint learning: A framework and survey," European Journal of Operational Research, Elsevier, vol. 314(1), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02327-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.