IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v199y2023i3d10.1007_s10957-023-02317-x.html
   My bibliography  Save this article

Optimization of Sparsity-Constrained Neural Networks as a Mixed Integer Linear Program

Author

Listed:
  • Bodo Rosenhahn

    (Leibniz University)

Abstract

The literature has shown how to optimize and analyze the parameters of different types of neural networks using mixed integer linear programs (MILP). Building on these developments, this work presents an approach to do so for a McCulloch/Pitts and Rosenblatt neurons. As the original formulation involves a step-function, it is not differentiable, but it is possible to optimize the parameters of neurons, and their concatenation as a shallow neural network, by using a mixed integer linear program. The main contribution of this paper is to additionally enforce sparsity constraints on the weights and activations as well as on the amount of used neurons. Several experiments demonstrate that such constraints effectively prevent overfitting in neural networks, and ensure resource optimized models.

Suggested Citation

  • Bodo Rosenhahn, 2023. "Optimization of Sparsity-Constrained Neural Networks as a Mixed Integer Linear Program," Journal of Optimization Theory and Applications, Springer, vol. 199(3), pages 931-954, December.
  • Handle: RePEc:spr:joptap:v:199:y:2023:i:3:d:10.1007_s10957-023-02317-x
    DOI: 10.1007/s10957-023-02317-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02317-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02317-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Bergman & Teng Huang & Philip Brooks & Andrea Lodi & Arvind U. Raghunathan, 2022. "JANOS: An Integrated Predictive and Prescriptive Modeling Framework," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 807-816, March.
    2. O. L. Mangasarian, 1993. "Mathematical Programming in Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 5(4), pages 349-360, November.
    3. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. V. Solodov, 1997. "Convergence Analysis of Perturbed Feasible Descent Methods," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 337-353, May.
    2. M. V. Solodov & S. K. Zavriev, 1998. "Error Stability Properties of Generalized Gradient-Type Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 663-680, September.
    3. Zhengyu Ma & Hong Seo Ryoo, 2021. "Spherical Classification of Data, a New Rule-Based Learning Method," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 44-71, April.
    4. H. D. Qi, 1999. "On Minimizing and Stationary Sequences of a New Class of Merit Functions for Nonlinear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 411-431, August.
    5. Giovanni Felici & Klaus Truemper, 2002. "A MINSAT Approach for Learning in Logic Domains," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 20-36, February.
    6. Eva K. Lee & Richard J. Gallagher & David A. Patterson, 2003. "A Linear Programming Approach to Discriminant Analysis with a Reserved-Judgment Region," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 23-41, February.
    7. W. Nick Street, 2005. "Oblique Multicategory Decision Trees Using Nonlinear Programming," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 25-31, February.
    8. P. S. Bradley & Usama M. Fayyad & O. L. Mangasarian, 1999. "Mathematical Programming for Data Mining: Formulations and Challenges," INFORMS Journal on Computing, INFORMS, vol. 11(3), pages 217-238, August.
    9. Palocsay, Susan W. & Stevens, Scott P. & Brookshire, Robert G. & Sacco, William J. & Copes, Wayne S. & Buckman, Robert F. & Smith, J. Stanley, 1996. "Using neural networks for trauma outcome evaluation," European Journal of Operational Research, Elsevier, vol. 93(2), pages 369-386, September.
    10. Keliang Wang & Leonardo Lozano & Carlos Cardonha & David Bergman, 2023. "Optimizing over an Ensemble of Trained Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 652-674, May.
    11. Miguel Angel Ortíz-Barrios & Dayana Milena Coba-Blanco & Juan-José Alfaro-Saíz & Daniela Stand-González, 2021. "Process Improvement Approaches for Increasing the Response of Emergency Departments against the COVID-19 Pandemic: A Systematic Review," IJERPH, MDPI, vol. 18(16), pages 1-31, August.
    12. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    13. Alcántara Mata, Antonio & Ruiz Mora, Carlos & Tsay, Calvin, 2024. "A Quantile Neural Network Framework for Twostage Stochastic Optimization," DES - Working Papers. Statistics and Econometrics. WS 43773, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Benati, Stefano & Ponce, Diego & Puerto, Justo & Rodríguez-Chía, Antonio M., 2022. "A branch-and-price procedure for clustering data that are graph connected," European Journal of Operational Research, Elsevier, vol. 297(3), pages 817-830.
    15. Akhtar, Pervaiz & Ghouri, Arsalan Mujahid & Ashraf, Aniqa & Lim, Jia Jia & Khan, Naveed R & Ma, Shuang, 2024. "Smart product platforming powered by AI and generative AI: Personalization for the circular economy," International Journal of Production Economics, Elsevier, vol. 273(C).
    16. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    17. Dimitris Bertsimas & Georgios Margaritis, 2025. "Global optimization: a machine learning approach," Journal of Global Optimization, Springer, vol. 91(1), pages 1-37, January.
    18. Wang, Mingsheng & Huang, Yong, 2024. "A digital Technology–Cultural resource strategy to drive innovation in cultural industries: A dynamic analysis based on machine learning," Technology in Society, Elsevier, vol. 77(C).
    19. Fu, Kun & Chen, Meiqian & Li, Qinghai, 2024. "Decontamination performance of metallic radionuclides in irradiated graphite via a fluidized bed reactor," Energy, Elsevier, vol. 305(C).
    20. Md Al Amin & Roberto Baldacci & Vahid Kayvanfar, 2025. "A comprehensive review on operating room scheduling and optimization," Operational Research, Springer, vol. 25(1), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:199:y:2023:i:3:d:10.1007_s10957-023-02317-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.