Enhancing spatiotemporal predictive learning: an approach with nested attention module
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-023-02318-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Brester, Christina & Kallio-Myers, Viivi & Lindfors, Anders V. & Kolehmainen, Mikko & Niska, Harri, 2023. "Evaluating neural network models in site-specific solar PV forecasting using numerical weather prediction data and weather observations," Renewable Energy, Elsevier, vol. 207(C), pages 266-274.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
- Fei, Yue & Xu, Bin & Chen, Xing-ni & Pei, Gang, 2024. "Optimization of infrared emissivity design for radiative cooling windows using artificial neural networks: Considering the diversity of climate and building features," Renewable Energy, Elsevier, vol. 231(C).
- Liu, Jingxuan & Zang, Haixiang & Zhang, Fengchun & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation," Renewable Energy, Elsevier, vol. 219(P1).
- Qiu, Lihong & Ma, Wentao & Feng, Xiaoyang & Dai, Jiahui & Dong, Yuzhuo & Duan, Jiandong & Chen, Badong, 2024. "A hybrid PV cluster power prediction model using BLS with GMCC and error correction via RVM considering an improved statistical upscaling technique," Applied Energy, Elsevier, vol. 359(C).
- Huang, Jing & Qin, Rui, 2024. "Elman neural network considering dynamic time delay estimation for short-term forecasting of offshore wind power," Applied Energy, Elsevier, vol. 358(C).
- Wang, Han & Yan, Jie & Zhang, Jiawei & Liu, Shihua & Liu, Yongqian & Han, Shuang & Qu, Tonghui, 2024. "Short-term integrated forecasting method for wind power, solar power, and system load based on variable attention mechanism and multi-task learning," Energy, Elsevier, vol. 304(C).
- Li, Baojie & Chen, Xin & Jain, Anubhav, 2024. "Power modeling of degraded PV systems: Case studies using a dynamically updated physical model (PV-Pro)," Renewable Energy, Elsevier, vol. 236(C).
- Hu, Zehuan & Gao, Yuan & Ji, Siyu & Mae, Masayuki & Imaizumi, Taiji, 2024. "Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data," Applied Energy, Elsevier, vol. 359(C).
- Franko Pandžić & Tomislav Capuder, 2023. "Advances in Short-Term Solar Forecasting: A Review and Benchmark of Machine Learning Methods and Relevant Data Sources," Energies, MDPI, vol. 17(1), pages 1-19, December.
- Huang, Jing & Yuan, Chengxu & Boland, John & Guo, Su & Liu, Weidong, 2024. "One-step ahead short-term hourly global solar radiation forecasting with a dynamical system based on classification of days," Renewable Energy, Elsevier, vol. 237(PB).
More about this item
Keywords
Spatiotemporal predictive learning; Attention mechanisms; Nested attention; Self-supervised learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-023-02318-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.