IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i2d10.1007_s10845-023-02260-8.html
   My bibliography  Save this article

Prediction of cutting force via machine learning: state of the art, challenges and potentials

Author

Listed:
  • Meng Liu

    (Guangxi University)

  • Hui Xie

    (University of Huddersfield
    Nankai University Binhai College)

  • Wencheng Pan

    (University of Huddersfield)

  • Songlin Ding

    (RMIT University)

  • Guangxian Li

    (Guangxi University
    RMIT University)

Abstract

Cutting force is a critical factor that reflects the machining states and affects tool wear, cutting stability, and the quality of the machined surface. Accurate prediction of cutting force has been the subject of extensive research in machining technology for decades. Generally, the predicting methods are based on the physical principles of metal cutting processes and they can be divided into two main categories: calculation of cutting forces by using analytical models and numerical simulation of cutting forces with finite element analysis. With the advance of artificial intelligence and machine learning (ML), various algorithms have been developed to predict cutting force with high accuracy and high efficiency. This paper provides a comprehensive review of force prediction methods, with a focus on ML-based algorithms. The mechanisms and characteristics of various force prediction methods, such as analytical models and finite element analysis, as well as different ML-based algorithms, are introduced in detail. The challenges of current algorithms and their potential in long-term and real-time prediction are discussed. The review highlights the potential of ML-based algorithms in improving the accuracy and efficiency of cutting force prediction and emphasizes the need for further research to address the current challenges and advance the field of force prediction in metal-cutting processes.

Suggested Citation

  • Meng Liu & Hui Xie & Wencheng Pan & Songlin Ding & Guangxian Li, 2025. "Prediction of cutting force via machine learning: state of the art, challenges and potentials," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 703-764, February.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02260-8
    DOI: 10.1007/s10845-023-02260-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02260-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02260-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Weili Cai & Wenjuan Zhang & Xiaofeng Hu & Yingchao Liu, 2020. "A hybrid information model based on long short-term memory network for tool condition monitoring," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1497-1510, August.
    2. Vineet Jain & Tilak Raj, 2018. "Prediction of cutting force by using ANFIS," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1137-1146, October.
    3. Fan, Yi & Wang, Pengjun & Heidari, Ali Asghar & Chen, Huiling & HamzaTurabieh, & Mafarja, Majdi, 2022. "Random reselection particle swarm optimization for optimal design of solar photovoltaic modules," Energy, Elsevier, vol. 239(PA).
    4. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    5. Hossein Bonakdari & Isa Ebtehaj & Pijush Samui & Bahram Gharabaghi, 2019. "Lake Water-Level fluctuations forecasting using Minimax Probability Machine Regression, Relevance Vector Machine, Gaussian Process Regression, and Extreme Learning Machine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3965-3984, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
    2. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    3. Sina Montazeri & Akram Mirzaeinia & Haseebullah Jumakhan & Amir Mirzaeinia, 2024. "CNN-DRL for Scalable Actions in Finance," Papers 2401.06179, arXiv.org.
    4. Khasanzoda, Nasrullo & Safaraliev, Murodbek & Zicmane, Inga & Beryozkina, Svetlana & Rahimov, Jamshed & Ahyoev, Javod, 2022. "Use of smart grid based wind resources in isolated power systems," Energy, Elsevier, vol. 253(C).
    5. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    6. Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    7. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    8. James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
    9. Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022. "Voting: A machine learning approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.
    10. Chi Chen & Li Zhao & Wei Cao & Jiang Bian & Chunxiao Xing, 2020. "Trimming the Sail: A Second-order Learning Paradigm for Stock Prediction," Papers 2002.06878, arXiv.org.
    11. Barua, Ronil & Sharma, Anil K., 2022. "Dynamic Black Litterman portfolios with views derived via CNN-BiLSTM predictions," Finance Research Letters, Elsevier, vol. 49(C).
    12. Mohammad Zoynul Abedin & Mahmudul Hasan Moon & M. Kabir Hassan & Petr Hajek, 2025. "Deep learning-based exchange rate prediction during the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 345(2), pages 1335-1386, February.
    13. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    14. Bartosz Bieganowski & Robert Ślepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Working Papers 2024-03, Faculty of Economic Sciences, University of Warsaw.
    15. Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    16. Wei Pan & Jide Li & Xiaoqiang Li, 2020. "Portfolio Learning Based on Deep Learning," Future Internet, MDPI, vol. 12(11), pages 1-13, November.
    17. Shuai Sang & Lu Li, 2024. "A Novel Variant of LSTM Stock Prediction Method Incorporating Attention Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    18. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    19. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    20. Bohao Li & Zhenghui Lu & Xiaoliang Jin & Liping Zhao, 2024. "Tool wear prediction in milling CFRP with different fiber orientations based on multi-channel 1DCNN-LSTM," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2547-2566, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02260-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.