IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i6d10.1007_s10845-023-02164-7.html
   My bibliography  Save this article

Tool wear prediction in milling CFRP with different fiber orientations based on multi-channel 1DCNN-LSTM

Author

Listed:
  • Bohao Li

    (Xi’an Jiaotong University
    The University of British Columbia)

  • Zhenghui Lu

    (The University of British Columbia)

  • Xiaoliang Jin

    (The University of British Columbia)

  • Liping Zhao

    (Xi’an Jiaotong University)

Abstract

In the machining of carbon fiber reinforced polymer (CFRP) components, tool wear grows rapidly due to the highly abrasive property of carbon fibers, resulting in unfavorable part quality such as delamination and fiber pullout. The tool wear progression, cutting forces, and their quantitative relationship are highly dependent on the fiber orientation. This paper predicts the tool wear progression based on cutting force signals in milling unidirectional (UD) CFRP with the fiber orientation effect. A deep learning model based on multi-channel 1D convolutional neural network (CNN) and long short-term memory (LSTM) is used, with the benefit of considering the unique force variation features due to the CFRP anisotropy. Milling experiments with the fiber orientations of 0°, 45°, 90°, and 135° under different feed rates and cutting speeds were performed. The multi-channel 1D CNN obtains the force signal features from individual univariate time series, and combines the time-series information from all channels as the final feature representation in the final layer of the network. The LSTM layer extracts the temporal and spatial characteristics of the dynamic force signals. Moving window and distribution analysis techniques are applied to the predicted tool wear results to reduce the effect of force signal disturbance caused by CFRP inhomogeneity. The model achieves the tool wear prediction with R2 of 95.04% and MAE of 2.94 μm. Moreover, benefiting from its high feature representation capacity, the proposed method shows higher prediction accuracy for different cutting conditions with more than 25% improvement compared to other commonly used data-driven methods, including 1DCNN, 2DCNN, LSTM, BPNN, and SVR.

Suggested Citation

  • Bohao Li & Zhenghui Lu & Xiaoliang Jin & Liping Zhao, 2024. "Tool wear prediction in milling CFRP with different fiber orientations based on multi-channel 1DCNN-LSTM," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2547-2566, August.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02164-7
    DOI: 10.1007/s10845-023-02164-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02164-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02164-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philipp Niemietz & Mia J. K. Kornely & Daniel Trauth & Thomas Bergs, 2022. "Relating wear stages in sheet metal forming based on short- and long-term force signal variations," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2143-2155, October.
    2. Yasser Shaban & Mouhab Meshreki & Soumaya Yacout & Marek Balazinski & Helmi Attia, 2017. "Process control based on pattern recognition for routing carbon fiber reinforced polymer," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 165-179, January.
    3. Weili Cai & Wenjuan Zhang & Xiaofeng Hu & Yingchao Liu, 2020. "A hybrid information model based on long short-term memory network for tool condition monitoring," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1497-1510, August.
    4. Kumar Abhishek & V. Rakesh Kumar & Saurav Datta & Siba Sankar Mahapatra, 2017. "Parametric appraisal and optimization in machining of CFRP composites by using TLBO (teaching–learning based optimization algorithm)," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1769-1785, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Yang & Shaowen Lu & Liangyong Wang, 2020. "Fused magnesia manufacturing process: a survey," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 327-350, February.
    2. Guo, Cui & Ryoo, Hong Seo, 2021. "On Pareto-Optimal Boolean Logical Patterns for Numerical Data," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    3. Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
    4. Longhua Xu & Chuanzhen Huang & Chengwu Li & Jun Wang & Hanlian Liu & Xiaodan Wang, 2021. "Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 77-90, January.
    5. Zhiwen Huang & Jiajie Shao & Jianmin Zhu & Wei Zhang & Xiaoru Li, 2024. "Tool wear condition monitoring across machining processes based on feature transfer by deep adversarial domain confusion network," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1079-1105, March.
    6. M. R. Pavan Kumar & Prabhu Jayagopal, 2023. "Context-sensitive lexicon for imbalanced text sentiment classification using bidirectional LSTM," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2123-2132, June.
    7. Pauline Ong & Chon Haow Chong & Mohammad Zulafif Rahim & Woon Kiow Lee & Chee Kiong Sia & Muhammad Ariff Haikal Ahmad, 2020. "Intelligent approach for process modelling and optimization on electrical discharge machining of polycrystalline diamond," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 227-247, January.
    8. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    9. Qiwu Zhu & Qingyu Xiong & Zhengyi Yang & Yang Yu, 2023. "A novel feature-fusion-based end-to-end approach for remaining useful life prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3495-3505, December.
    10. Yuqing Zhou & Bintao Sun & Weifang Sun & Zhi Lei, 2022. "Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 247-258, January.
    11. Kedong Yan & Hong Seo Ryoo, 2022. "Graph, clique and facet of boolean logical polytope," Journal of Global Optimization, Springer, vol. 82(4), pages 1015-1052, April.
    12. Jianliang He & Yuxin Sun & Chen Yin & Yan He & Yulin Wang, 2023. "Cross-domain adaptation network based on attention mechanism for tool wear prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3365-3387, December.
    13. Martin Unterberg & Marco Becker & Philipp Niemietz & Thomas Bergs, 2024. "Data-driven indirect punch wear monitoring in sheet-metal stamping processes," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1721-1735, April.
    14. Lejeune, Miguel & Lozin, Vadim & Lozina, Irina & Ragab, Ahmed & Yacout, Soumaya, 2019. "Recent advances in the theory and practice of Logical Analysis of Data," European Journal of Operational Research, Elsevier, vol. 275(1), pages 1-15.
    15. Danil Yu Pimenov & Andres Bustillo & Szymon Wojciechowski & Vishal S. Sharma & Munish K. Gupta & Mustafa Kuntoğlu, 2023. "Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2079-2121, June.
    16. Huifeng Su & Renzhuang Li & Ming Yang, 2021. "An experimental study of modified physical performance test of low-temperature epoxy grouting material for grouting joints with tenon and mortise," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 667-677, March.
    17. Carlos A. Escobar & Megan E. McGovern & Ruben Morales-Menendez, 2021. "Quality 4.0: a review of big data challenges in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2319-2334, December.
    18. Xianli Liu & Bowen Zhang & Xuebing Li & Shaoyang Liu & Caixu Yue & Steven Y. Liang, 2023. "An approach for tool wear prediction using customized DenseNet and GRU integrated model based on multi-sensor feature fusion," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 885-902, February.
    19. Chuanhui Zuo & Jialong Wang & Mingping Liu & Suhui Deng & Qingnian Wang, 2023. "An Ensemble Framework for Short-Term Load Forecasting Based on TimesNet and TCN," Energies, MDPI, vol. 16(14), pages 1-17, July.
    20. Elango Natarajan & Varadaraju Kaviarasan & Wei Hong Lim & Sew Sun Tiang & S. Parasuraman & Sangeetha Elango, 2020. "Non-dominated sorting modified teaching–learning-based optimization for multi-objective machining of polytetrafluoroethylene (PTFE)," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 911-935, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02164-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.