IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i1d10.1007_s10845-023-02264-4.html
   My bibliography  Save this article

A novel transfer learning approach based on deep degradation feature adaptive alignment for remaining useful life prediction with multi-condition data

Author

Listed:
  • Yi Lyu

    (University of Electronic Science and Technology of China, Zhongshan Institute
    University of Electronic Science and Technology of China)

  • Zhenfei Wen

    (University of Electronic Science and Technology of China)

  • Aiguo Chen

    (University of Electronic Science and Technology of China)

Abstract

Transfer learning (TL) plays an important role in the remaining useful life (RUL) prediction when the training data and testing data are collected under different operating conditions. However, the existing studies have two problems: (1) Only using the single-condition data as the source domain may encounter negative transfer, especially when the operating conditions in the training and actual usage are vastly different. (2) Traditional domain adaptation methods only reduce the discrepancy of global feature distributions of source and target, and ignore the impact of local features. To tackle these problems, this paper proposes a novel TL approach based on deep degradation feature adaptive alignment, which uses multi-condition degradation datasets as the source domains and forms multiple domain pairs with the target data. A network framework with multiple parallel sub-networks is designed to extract the degradation features of all domain pairs, and a deep degradation feature adaptive alignment mechanism is developed that can minimize marginal and conditional distribution discrepancies and adaptively adjust their calculation proportions to align the global and local features of each domain pair. In the experiment, the RUL prediction performance is verified by using the turbofan engine dataset, and its advantages are validated by comparisons with other methods.

Suggested Citation

  • Yi Lyu & Zhenfei Wen & Aiguo Chen, 2025. "A novel transfer learning approach based on deep degradation feature adaptive alignment for remaining useful life prediction with multi-condition data," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 619-637, January.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:1:d:10.1007_s10845-023-02264-4
    DOI: 10.1007/s10845-023-02264-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02264-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02264-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. Ding, Yifei & Jia, Minping & Miao, Qiuhua & Huang, Peng, 2021. "Remaining useful life estimation using deep metric transfer learning for kernel regression," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Chen, Jinglong & Jing, Hongjie & Chang, Yuanhong & Liu, Qian, 2019. "Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 372-382.
    4. Han Cheng & Xianguang Kong & Qibin Wang & Hongbo Ma & Shengkang Yang & Gaige Chen, 2023. "Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 587-613, February.
    5. Zhuang, Jichao & Jia, Minping & Zhao, Xiaoli, 2022. "An adversarial transfer network with supervised metric for remaining useful life prediction of rolling bearing under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jimeng & Mao, Weilin & Yang, Bixin & Meng, Zong & Tong, Kai & Yu, Shancheng, 2024. "RUL prediction of rolling bearings across working conditions based on multi-scale convolutional parallel memory domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Jiaxian Chen & Dongpeng Li & Ruyi Huang & Zhuyun Chen & Weihua Li, 2025. "A transfer regression network-based adaptive calibration method for remaining useful life prediction considering individual discrepancies in the degradation process of machinery," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2767-2783, April.
    3. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang, 2022. "The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Cao, Yudong & Ding, Yifei & Jia, Minping & Tian, Rushuai, 2021. "A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Bermeo-Ayerbe, Miguel Angel & Cocquempot, Vincent & Ocampo-Martinez, Carlos & Diaz-Rozo, Javier, 2023. "Remaining useful life estimation of ball-bearings based on motor current signature analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2021. "Learning the health index of complex systems using dynamic conditional variational autoencoders," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Hu, Tao & Guo, Yiming & Gu, Liudong & Zhou, Yifan & Zhang, Zhisheng & Zhou, Zhiting, 2022. "Remaining useful life estimation of bearings under different working conditions via Wasserstein distance-based weighted domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    9. Xiang, Sheng & Qin, Yi & Luo, Jun & Pu, Huayan & Tang, Baoping, 2021. "Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Cheng, Wei & Ahmad, Hassaan & Gao, Lin & Xing, Ji & Nie, Zelin & Chen, Xuefeng & Xu, Zhao & Zhang, Rongyong, 2025. "Diagnostics and Prognostics in Power Plants: A systematic review," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    11. Ni, Qing & Ji, J.C. & Feng, Ke & Zhang, Yongchao & Lin, Dongdong & Zheng, Jinde, 2024. "Data-driven bearing health management using a novel multi-scale fused feature and gated recurrent unit," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Li, Yuan & Li, Jingwei & Wang, Huanjie & Liu, Chengbao & Tan, Jie, 2024. "Knowledge enhanced ensemble method for remaining useful life prediction under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. Dong, Shaojiang & Xiao, Jiafeng & Hu, Xiaolin & Fang, Nengwei & Liu, Lanhui & Yao, Jinbao, 2023. "Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Hu, Tao & Guo, Yiming & Gu, Liudong & Zhou, Yifan & Zhang, Zhisheng & Zhou, Zhiting, 2022. "Remaining useful life prediction of bearings under different working conditions using a deep feature disentanglement based transfer learning method," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    15. Pan, Tongyang & Chen, Jinglong & Ye, Zhisheng & Li, Aimin, 2022. "A multi-head attention network with adaptive meta-transfer learning for RUL prediction of rocket engines," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Chao Huang & Siqi Bu & Hiu Hung Lee & Kwong Wah Chan & Winco K. C. Yung, 2024. "Prognostics and health management for induction machines: a comprehensive review," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 937-962, March.
    17. Nannan Xu & Xinze Cui & Xin Wang & Wei Zhang & Tianyu Zhao, 2022. "An Intelligent Athlete Signal Processing Methodology for Balance Control Ability Assessment with Multi-Headed Self-Attention Mechanism," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    18. Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    19. Lyu, Yi & Shen, Zaichen & Zhou, Ningxu & Wen, Zhenfei & Chen, Ci, 2025. "A feature separation transfer network with contrastive metric for remaining useful life prediction under different working conditions," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    20. Xu, Zhiqiang & Zhang, Yujie & Miao, Qiang, 2024. "An attention-based multi-scale temporal convolutional network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:1:d:10.1007_s10845-023-02264-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.