IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007688.html
   My bibliography  Save this article

RUL prediction of rolling bearings across working conditions based on multi-scale convolutional parallel memory domain adaptation network

Author

Listed:
  • Li, Jimeng
  • Mao, Weilin
  • Yang, Bixin
  • Meng, Zong
  • Tong, Kai
  • Yu, Shancheng

Abstract

Rolling bearings are widely used in mechanical equipment, effectively determining the failure time of rolling bearings is particularly significant to ensure the safe performance of mechanical equipment. However, in industrial scenarios, the machine mainly works in the normal state for a long time, it is difficult to accumulate the same distribution of the whole life data, but the use of different distribution of data for forecasting will reduce the performance of deep learning-based prediction methods. Therefore, in order to tackle this problem, a multi-scale convolutional parallel memory domain adaptation network is investigated to forecast the residual useful life (RUL) of bearings across working conditions. Firstly, a new characteristic extractor—multi-scale convolutional parallel memory network is designed to extract spatial and temporal characteristics of bearing degradation data. At the same time, in order to minimize the distribution difference between source domain and target domain, a temporal-spatial feature alignment strategy is proposed to obtain domain invariable characteristics by combining maximum mean difference and domain adversarial learning. Finally, the availability of the proposed approach is verified using two rolling bearing data sets. The results reveal that it can efficiently forecast the RUL of rolling bearings across working conditions.

Suggested Citation

  • Li, Jimeng & Mao, Weilin & Yang, Bixin & Meng, Zong & Tong, Kai & Yu, Shancheng, 2024. "RUL prediction of rolling bearings across working conditions based on multi-scale convolutional parallel memory domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007688
    DOI: 10.1016/j.ress.2023.109854
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.