IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i2d10.1007_s10845-023-02083-7.html
   My bibliography  Save this article

Partitioned abrasive belt condition monitoring based on a unified coefficient and image processing

Author

Listed:
  • Xiaokang Huang

    (Shanghai Jiao Tong University)

  • Xukai Ren

    (Shaoxing Key Laboratory of Special Equipment Intelligent Testing and Evaluation)

  • Huanwei Yu

    (Shaoxing Key Laboratory of Special Equipment Intelligent Testing and Evaluation)

  • Xiyong Du

    (Shaoxing Key Laboratory of Special Equipment Intelligent Testing and Evaluation)

  • Xianfeng Chen

    (Shaoxing Key Laboratory of Special Equipment Intelligent Testing and Evaluation)

  • Ze Chai

    (Shanghai Jiao Tong University)

  • Xiaoqi Chen

    (Shanghai Jiao Tong University
    South China University of Technology, Guangzhou International Campus)

Abstract

Abrasive belt condition (BC) monitoring is significant for achieving profile finishing precision and quality in grinding of difficult-to-machine materials like Inconel 718. While indirect signal-based BC monitoring methods are ineffective when varying grinding parameters, existing image-based direct monitoring methods currently suffer from a lack of: (i) a unified and quantitative definition of the belt condition; (ii) in situ tool-surface image capture and relevant feature extraction; and (iii) continuous monitoring of the entire belt conditions. This paper proposes a partitioned BC monitoring method that is adaptable to ever-changing grinding conditions. Based on the belt surface analysis, a unified BC coefficient is quantitatively defined by using two critical BC-dependent features, the average area and number of worn flats of abrasive grains per unit area. The belt surface image is in-situ captured from moving belts and is preprocessed to eliminate image defects in a unified form, then the entire belt is partitioned, and finally the image features are extracted by Gabor filter and K-means clustering. The proposed robust method which has a maximum relative repeatability error of 9.33%, and less computation was validated by the experimental results. This study provides an adaptable and efficient way for continuously monitoring the conditions of the entire belt and the grinding area.

Suggested Citation

  • Xiaokang Huang & Xukai Ren & Huanwei Yu & Xiyong Du & Xianfeng Chen & Ze Chai & Xiaoqi Chen, 2024. "Partitioned abrasive belt condition monitoring based on a unified coefficient and image processing," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 905-923, February.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-023-02083-7
    DOI: 10.1007/s10845-023-02083-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02083-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02083-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan Shen & Feng Yang & Mohamed Salahuddin Habibullah & Jhinaoui Ahmed & Ankit Kumar Das & Yu Zhou & Choon Lim Ho, 2021. "Predicting tool wear size across multi-cutting conditions using advanced machine learning techniques," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1753-1766, August.
    2. Hasan Tercan & Tobias Meisen, 2022. "Machine learning and deep learning based predictive quality in manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1879-1905, October.
    3. Siti Nurfadilah Binti Jaini & Deug-Woo Lee & Seung-Jun Lee & Mi-Ru Kim & Gil-Ho Son, 2021. "Indirect tool monitoring in drilling based on gap sensor signal and multilayer perceptron feed forward neural network," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1605-1619, August.
    4. Yuqing Zhou & Bintao Sun & Weifang Sun & Zhi Lei, 2022. "Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 247-258, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqar Ahmed Khan & Mahmoud Masoud & Abdelrahman E. E. Eltoukhy & Mehran Ullah, 2025. "Stacked encoded cascade error feedback deep extreme learning machine network for manufacturing order completion time," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1313-1339, February.
    2. Pei Wang & Tao Wang & Sheng Yang & Han Cheng & Pengde Huang & Qianle Zhang, 2024. "Production quality prediction of cross-specification products using dynamic deep transfer learning network," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2567-2592, August.
    3. Zhe Li & Kexin Liu & Xudong Wang & Xiaofang Yuan & He Xie & Yaonan Wang, 2025. "A signal-to-image fault classification method based on multi-sensor data for robotic grinding monitoring," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 537-550, January.
    4. Zhen Zhang & Zenan Yang & Chenchong Wang & Wei Xu, 2024. "Accelerating ultrashort pulse laser micromachining process comprehensive optimization using a machine learning cycle design strategy integrated with a physical model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 449-465, January.
    5. Thomas Heitz & Ning He & Addi Ait-Mlouk & Daniel Bachrathy & Ni Chen & Guolong Zhao & Liang Li, 2025. "Investigation on eXtreme Gradient Boosting for cutting force prediction in milling," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 285-301, January.
    6. Marco Nunes & António Abreu & Jelena Bagnjuk & Edgar Nunes & Célia Saraiva, 2022. "A Strategic Process to Manage Collaborative Risks in Supply Chain Networks (SCN) to Improve Resilience and Sustainability," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    7. Sergey Butsykin & Anton Gordynets & Alexey Kiselev & Mikhail Slobodyan, 2023. "Evaluation of the reliability of resistance spot welding control via on-line monitoring of dynamic resistance," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3109-3129, October.
    8. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    9. Shugui Wang & Yunxian Cui & Yuxin Song & Chenggang Ding & Wanyu Ding & Junwei Yin, 2024. "A novel surface temperature sensor and random forest-based welding quality prediction model," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3291-3314, October.
    10. Ahmed Mujtaba & Faisal Islam & Patrick Kaeding & Thomas Lindemann & B. Gangadhara Prusty, 2025. "Machine-learning based process monitoring for automated composites manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1095-1110, February.
    11. Rishi Kumar & Kuldip Singh Sangwan & Christoph Herrmann & Rishi Ghosh, 2024. "Development of a cyber physical production system framework for smart tool health management," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3037-3066, October.
    12. Javid Akhavan & Jiaqi Lyu & Souran Manoochehri, 2024. "A deep learning solution for real-time quality assessment and control in additive manufacturing using point cloud data," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1389-1406, March.
    13. Davide Cannizzaro & Paolo Antonioni & Francesco Ponzio & Manuela Galati & Edoardo Patti & Santa Cataldo, 2025. "Machine learning-enabled real-time anomaly detection for electron beam powder bed fusion additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2105-2119, March.
    14. Indrawan Nugrahanto & Hariyanto Gunawan & Hsing-Yu Chen, 2024. "Innovative Approaches to Sustainable Computer Numeric Control Machining: A Machine Learning Perspective on Energy Efficiency," Sustainability, MDPI, vol. 16(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-023-02083-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.