IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i1d10.1007_s10845-022-02030-y.html
   My bibliography  Save this article

State identification of a 5-axis ultra-precision CNC machine tool using energy consumption data assisted by multi-output densely connected 1D-CNN model

Author

Listed:
  • Zhicheng Xu

    (University of Wisconsin Madison
    Wuhan University of Technology)

  • Vignesh Selvaraj

    (University of Wisconsin Madison)

  • Sangkee Min

    (University of Wisconsin Madison)

Abstract

Ultra-precision machine tools are the foundation for ultra-precision manufacturing. In the era of Industry 4.0, monitoring the machine tool’s working condition is critical to control the machining quality. In a conventional setting, numerous sensors are retrofitted to the machine to monitor its condition effectively. This process could potentially increase the cost of the widespread application of Industry 4.0 technologies. In contrast to the method of retrofitting the machine tool, in this work, we propose an intelligent monitoring system that utilizes the equipment’s power consumption data to assess and determine the equipment states. The work also discusses the development of a G-code interpreter application used to develop an equipment working status matrix. The G-code interpreter application can generate the training data and extract features for the Deep Learning/Machine learning models. The feature extraction process can also be customized by providing template functions to the application. A densely connected convolutional neural network with multiple outputs was then developed to identify the machine state and predict the feedrate simultaneously. The model was able to identify the working component of the machine with an accuracy of $$\sim $$ ∼ 94% and was able to predict the feed rate with a standard deviation ( $$\sigma $$ σ ) of 21.900 from the energy consumption data. The overarching goal of the research work is to predict energy consumed, and augment anomaly detection for an ultra-precision CNC machine tool. The work presented here involves the identification of the equipment state and prediction of the equipment feedrate, and it will serve as a precursor.

Suggested Citation

  • Zhicheng Xu & Vignesh Selvaraj & Sangkee Min, 2024. "State identification of a 5-axis ultra-precision CNC machine tool using energy consumption data assisted by multi-output densely connected 1D-CNN model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 147-160, January.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:1:d:10.1007_s10845-022-02030-y
    DOI: 10.1007/s10845-022-02030-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-02030-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-02030-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanan Pan & Renke Kang & Zhigang Dong & Wenhao Du & Sen Yin & Yan Bao, 2022. "On-line prediction of ultrasonic elliptical vibration cutting surface roughness of tungsten heavy alloy based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 675-685, March.
    2. Andrew Glaeser & Vignesh Selvaraj & Sooyoung Lee & Yunseob Hwang & Kangsan Lee & Namjeong Lee & Seungchul Lee & Sangkee Min, 2021. "Applications of deep learning for fault detection in industrial cold forging," International Journal of Production Research, Taylor & Francis Journals, vol. 59(16), pages 4826-4835, August.
    3. Kendrik Yan Hong Lim & Pai Zheng & Chun-Hsien Chen, 2020. "A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1313-1337, August.
    4. Yunhan Kim & Taekyum Kim & Byeng D. Youn & Sung-Hoon Ahn, 2022. "Machining quality monitoring (MQM) in laser-assisted micro-milling of glass using cutting force signals: an image-based deep transfer learning," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1813-1828, August.
    5. Jinjiang Wang & Lunkuan Ye & Robert X. Gao & Chen Li & Laibin Zhang, 2019. "Digital Twin for rotating machinery fault diagnosis in smart manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3920-3934, June.
    6. Weili Cai & Wenjuan Zhang & Xiaofeng Hu & Yingchao Liu, 2020. "A hybrid information model based on long short-term memory network for tool condition monitoring," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1497-1510, August.
    7. Saideep Nannapaneni & Sankaran Mahadevan & Abhishek Dubey & Yung-Tsun Tina Lee, 2021. "Online monitoring and control of a cyber-physical manufacturing process under uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1289-1304, June.
    8. Lu Liu & Siyuan Tian & Dingyu Xue & Tao Zhang & YangQuan Chen, 2019. "Industrial feedforward control technology: a review," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2819-2833, December.
    9. Xiang Li & Wei Zhang & Qian Ding & Jian-Qiao Sun, 2020. "Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 433-452, February.
    10. Nikhil M. Thoppil & V. Vasu & C. S. P. Rao, 2021. "Health indicator construction and remaining useful life estimation for mechanical systems using vibration signal prognostics," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 1001-1010, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
    2. Georgios Falekas & Athanasios Karlis, 2021. "Digital Twin in Electrical Machine Control and Predictive Maintenance: State-of-the-Art and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-26, September.
    3. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    4. Maurizio Bevilacqua & Eleonora Bottani & Filippo Emanuele Ciarapica & Francesco Costantino & Luciano Di Donato & Alessandra Ferraro & Giovanni Mazzuto & Andrea Monteriù & Giorgia Nardini & Marco Orten, 2020. "Digital Twin Reference Model Development to Prevent Operators’ Risk in Process Plants," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    5. Bahareh Tajiani & Jørn Vatn, 2023. "Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1756-1777, October.
    6. Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Kendrik Yan Hong Lim & Pai Zheng & Chun-Hsien Chen, 2020. "A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1313-1337, August.
    8. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    9. Phong B. Dao, 2021. "Learning Feedforward Control Using Multiagent Control Approach for Motion Control Systems," Energies, MDPI, vol. 14(2), pages 1-17, January.
    10. Gurtej Singh Saini & AmirHossein Fallah & Pradeepkumar Ashok & Eric van Oort, 2022. "Digital Twins for Real-Time Scenario Analysis during Well Construction Operations," Energies, MDPI, vol. 15(18), pages 1-22, September.
    11. Wang, Jinrui & Zhang, Zongzhen & Liu, Zhiliang & Han, Baokun & Bao, Huaiqian & Ji, Shanshan, 2023. "Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Longhua Xu & Chuanzhen Huang & Chengwu Li & Jun Wang & Hanlian Liu & Xiaodan Wang, 2021. "Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 77-90, January.
    13. Asif Khan & Hyunho Hwang & Heung Soo Kim, 2021. "Synthetic Data Augmentation and Deep Learning for the Fault Diagnosis of Rotating Machines," Mathematics, MDPI, vol. 9(18), pages 1-26, September.
    14. M. R. Pavan Kumar & Prabhu Jayagopal, 2023. "Context-sensitive lexicon for imbalanced text sentiment classification using bidirectional LSTM," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2123-2132, June.
    15. Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Qiwu Zhu & Qingyu Xiong & Zhengyi Yang & Yang Yu, 2023. "A novel feature-fusion-based end-to-end approach for remaining useful life prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3495-3505, December.
    17. Elisa Negri & Vibhor Pandhare & Laura Cattaneo & Jaskaran Singh & Marco Macchi & Jay Lee, 2021. "Field-synchronized Digital Twin framework for production scheduling with uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1207-1228, April.
    18. Yuqing Zhou & Bintao Sun & Weifang Sun & Zhi Lei, 2022. "Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 247-258, January.
    19. Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    20. Remigiusz Iwańkowicz & Radosław Rutkowski, 2023. "Digital Twin of Shipbuilding Process in Shipyard 4.0," Sustainability, MDPI, vol. 15(12), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:1:d:10.1007_s10845-022-02030-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.