IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i2d10.1007_s10845-021-01826-8.html
   My bibliography  Save this article

Knowledge-driven framework for industrial robotic systems

Author

Listed:
  • Timon Hoebert

    (Practical Robotics Institute Austria)

  • Wilfried Lepuschitz

    (Practical Robotics Institute Austria)

  • Markus Vincze

    (Vienna University of Technology)

  • Munir Merdan

    (Practical Robotics Institute Austria)

Abstract

Due to their advantages, there is an increase of applying robotic systems for small batch production as well as for complex manufacturing processes. However, programming and configuring robots is time and resource consuming while being also accompanied by high costs that are especially challenging for small- and medium-sized enterprises. The current way of programming industrial robots by using teach-in control devices and/or using vendor-specific programming languages is in general a complex activity that requires extensive knowledge in the robotics domain. It is therefore important to offer new practical methods for the programming of industrial robots that provide flexibility and versatility in order to achieve feasible robotics solutions for small lot size productions. This paper focuses on the development of a knowledge-driven framework, which should overcome the limitations of state-of-the-art robotics solutions and enhance the agility and autonomy of industrial robotics systems using ontologies as a knowledge-source. The framework includes reasoning and perception abilities as well as the ability to generate plans, select appropriate actions, and finally execute these actions. In this context, a challenge is the fusion of vision system information with the decision-making component, which can use this information for generating the assembly tasks and executable programs. The introduced product model in the form of an ontology enables that the framework can semantically link perception data to product models to consequently derive handling operations and required tools. Besides, the framework enables an easier adaption of robot-based production systems for individualized production, which requires swift configuration and efficient planning. The presented approach is demonstrated in a laboratory environment with an industrial pilot test case. Our application shows the potential to reduce the efforts needed to program robots in an automated production environment. In this context, the benefits as well as shortcomings of the approach are also discussed in the paper.

Suggested Citation

  • Timon Hoebert & Wilfried Lepuschitz & Markus Vincze & Munir Merdan, 2023. "Knowledge-driven framework for industrial robotic systems," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 771-788, February.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01826-8
    DOI: 10.1007/s10845-021-01826-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01826-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01826-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manuel Parente & Gonçalo Figueira & Pedro Amorim & Alexandra Marques, 2020. "Production scheduling in the context of Industry 4.0: review and trends," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5401-5431, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lemstra, Mary Anny Moraes Silva & de Mesquita, Marco Aurélio, 2023. "Industry 4.0: a tertiary literature review," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    2. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2022. "Effective and interpretable dispatching rules for dynamic job shops via guided empirical learning," Omega, Elsevier, vol. 111(C).
    3. Pourya Pourhejazy & Chen-Yang Cheng & Kuo-Ching Ying & Nguyen Hoai Nam, 2023. "Meta-Lamarckian-based iterated greedy for optimizing distributed two-stage assembly flowshops with mixed setups," Annals of Operations Research, Springer, vol. 322(1), pages 125-146, March.
    4. Li, Mingxing & Huang, George Q., 2021. "Production-intralogistics synchronization of industry 4.0 flexible assembly lines under graduation intelligent manufacturing system," International Journal of Production Economics, Elsevier, vol. 241(C).
    5. Behice Meltem Kayhan & Gokalp Yildiz, 2023. "Reinforcement learning applications to machine scheduling problems: a comprehensive literature review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 905-929, March.
    6. Núñez-Merino, Miguel & Maqueira-Marín, Juan Manuel & Moyano-Fuentes, José & Castaño-Moraga, Carlos Alberto, 2022. "Industry 4.0 and supply chain. A Systematic Science Mapping analysis," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    7. Dieste, Marcos & Sauer, Philipp C. & Orzes, Guido, 2022. "Organizational tensions in industry 4.0 implementation: A paradox theory approach," International Journal of Production Economics, Elsevier, vol. 251(C).
    8. Tortorella, Guilherme Luz & Saurin, Tarcisio A. & Hines, Peter & Antony, Jiju & Samson, Daniel, 2023. "Myths and facts of industry 4.0," International Journal of Production Economics, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01826-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.